#### Filter Results:

#### Publication Year

1990

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Parametric polymorphism constrains the behavior of pure functional programs in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. Unfortunately, the standard parametricity theorem fails for nonstrict languages supporting a polymorphic strict evaluation primitive like Haskell's seq. Contrary… (More)

GADTs are at the cutting edge of functional programming and becomemore widely used every day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this paper we solve this problem by showing that the standard theory of data types as carriers of initial algebras of functors can be extended from algebraic and nested data types… (More)

Parametric polymorphism constrains the behavior of pure functional programs in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. Unfortunately, standard parametricity results — including so-called free theorems — fail for nonstrict languages supporting a polymorphic strict evaluation… (More)

Short cut fusion is a particular program transformation technique which uses a single, local transformation — called the foldr-build rule — to remove certain intermediate lists from modularly constructed functional programs. Arguments that short cut fusion is correct typically appeal either to intuition or to " free theorems " — even though the latter have… (More)

Monads are commonplace programming devices that are used to uniformly structure computations with effects such as state, exceptions, and I/O. This paper further develops the monadic programming paradigm by investigating the extent to which monadic computations can be optimised by using generalisations of short cut fusion to eliminate monadic structures… (More)

This paper provides several induction rules that can be used to prove properties of effectful data types. Our results are semantic in nature and build upon Hermida and Jacobs' fibrational formulation of induction for polynomial data types and its extension to all inductive data types by Ghani, Johann, and Fumex. An effectful data type µ(T F) is built from a… (More)