Learn More
BACKGROUND Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during(More)
ABSTRACT Fusarium head blight (FHB), caused by Gibberella zeae, is a devastating disease of wheat worldwide. Cryptococcus nodaensis OH 182.9 is an effective biocontrol agent for this disease. Development of a dried product of OH 182.9 would have potential advantages of ease of handling, favorable economics, and acceptance by end users. Isolate OH 182.9 was(More)
Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 was mutagenized using UV-C irradiation to produce yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol. UV-C irradiation potentially produces large numbers of random mutations broadly and uniformly over the whole genome to generate unique strains. Wild-type cultures of S. stipitis(More)
Multistrain mixtures of biocontrol agents which can reduce plant disease to a greater extent than the individual strains of the mixture, commonly, are prepared by blending separately produced fermentation products. Co-cultivation of strains to equivalent biomass yields would provide mixture advantages without incWTing the cost disadvantages of multiple(More)
BACKGROUND Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough(More)
Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (57) ABSTRACT Three choline utilizing strains of microorganisms isolated from the anthers of wheat, Aureobasidium pullulans strainAS 55.2, Arthrobacter species strain OH 221.3, and Pseudomo nas species strain AS 64.4, are superior antagonists of F.(More)
Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigned to the Yarrowia clade, and most are not well(More)
  • 1