Learn More
Recently, the description of glucokinase mRNA in certain neuroendocrine cells has opened new ways to characterize this enzyme in the rat brain. In this study, we found glucokinase mRNA and a similar RNA splicing pattern of the glucokinase gene product in rat hypothalamus and pancreatic islets; the mRNA that codes for B1 isoform was the most abundant, with(More)
Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of basal autophagy in neural(More)
The intracellular pathogen resistance 1 (Ipr1) gene has been reported to play a role in mediating innate immunity in a mouse model of Mycobacterium tuberculosis infection, and polymorphisms of its human ortholog, SP110 nuclear body protein, have been suggested to be associated with tuberculosis. Thus, the bovine SP110 gene was considered to be a promising(More)
Our previous description of functional glucokinase isoforms in the rat brain has opened new questions concerning the presence of glucokinase regulatory protein in the brain and the functional role of its interactions with glucokinase. In this study, we found glucokinase regulatory protein mRNA in rat brain, pancreatic islets and liver. In addition, we found(More)
The glucose transporter isoform-2 (GLUT-2) and glucokinase are considered to be components of a glucose sensor system controlling several key processes, and hence may modulate feeding behaviour. We have found GLUT-2 and glucokinase mRNAs in several brain regions, including the ventromedial and arcuate nuclei of the hypothalamus. GLUT-2, glucokinase and(More)
Our previous description of functional glucokinase (GK) isoforms and their interactions with glucokinase regulatory protein (GKRP) in adult rat and human brains suggested that both participate in glucose sensing in the central nervous system. To determine whether both proteins are coexpressed and active before birth or during early post-natal life, we(More)
In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter(More)
In an attempt to study the role of glucokinase (GK) and the effects of glucose and peptides on GK gene expression and on the activity of this enzyme in the hypothalamus, we used two kinds of biological models: hypothalamic GT1-7 cells and rat hypothalamic slices. The expression of the GK gene in GT1-7 cells was reduced by insulin (INS) and was not modified(More)
The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate(More)
In an attempt to gain better insight into the central effects of glucagon-like peptide (GLP-1), we studied the action of glucose and of regulatory peptides on the expression of its receptor (GLP-1R) in hypothalamic GT1-7 cells and in ventromedial (VMH) and lateral (LH) rat hypothalamus slices. The promoter activity of GLP-1R in transfected GT1-7 cells(More)