Learn More
Glucocorticoids are potent immunosuppressive drugs, but their mechanism is poorly understood. Nuclear factor kappa B (NF-kappa B), a regulator of immune system and inflammation genes, may be a target for glucocorticoid-mediated immunosuppression. The activation of NF-kappa B involves the targeted degradation of its cytoplasmic inhibitor, I kappa B alpha,(More)
NF-kappaB is a principal transcriptional regulator of diverse cytokine-mediated processes and is tightly controlled by the IkappaB kinase complex (IKK-alpha/beta/gamma). IKK-beta and IKK-gamma are critical for cytokine-induced NF-kappaB function, whereas IKK-alpha is thought to be involved in other regulatory pathways. However, recent data suggest a role(More)
The ras proto-oncogene is frequently mutated in human tumors and functions to chronically stimulate signal transduction cascades resulting in the synthesis or activation of specific transcription factors, including Ets, c-Myc, c-Jun, and nuclear factor kappa B (NF-kappaB). These Ras-responsive transcription factors are required for transformation, but the(More)
NF-Y binds a CCAAT motif found in many eukaryotic polymerase II-dependent promoters. In the HLA-DRA promoter it has been demonstrated that stereo-specific alignment between this motif and the upstream elements X1 and X2 is required for activation. To study the underlying mechanism for this requirement, a panel of transfected cell lines that maintained(More)
Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-kappaB, which regulates cell proliferation and(More)
The membrane bound receptor tyrosine kinase Her2 is overexpressed in approximately 30% of human breast cancers which correlates with poor prognosis. Her2-induced signaling pathways include MAPK and PI3K/Akt, of which the latter has been shown to be critical for Her2 + breast cancer cell growth and survival. Additionally, the NF-κB pathway has been shown to(More)
BACKGROUND Activation of the transcription factor NF-kappaB by cytokines is rapid, mediated through the activation of the IKK complex with subsequent phosphorylation and degradation of the inhibitory IkappaB proteins. The IKK complex is comprised of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory protein known as NEMO. Using cells from mice(More)
NF-␬ B is an important transcription factor required for T cell proliferation and other immuno-logical functions. The NF-␬ B1 gene encodes a 105-kD protein that is the precursor of the p50 component of NF-␬ B. Previously, we and others have demonstrated that NF-␬ B regulates the NF-␬ B1 gene. In this manuscript we have investigated the molecular mechanisms(More)
Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and(More)
Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-␬B, which regulates cell proliferation and(More)