Learn More
Metronidazole (Mz)-resistant Giardia and Trichomonas were inhibited by 1 of 30 new 5-nitroimidazole drugs. Another five drugs were effective against some but not all of the Mz-resistant parasites. This study provides the incentive for the continued design of 5-nitroimidazole drugs to bypass cross-resistance among established 5-nitromidazole antiparasitic(More)
Metronidazole (MTR) is frequently used for the treatment of Blastocystis infections, but with variable effectiveness, and often with treatment failures as a possible result of drug resistance. We have developed two Blastocystis MTR-resistant (MTRR) subtype 4 WR1 lines (WR1-M4 and WR1-M5), with variable susceptibility to a panel of anti-protozoal agents(More)
We report herein the synthesis of substituted 2-[4-(1,2-dimethyl-5-nitro-1H-imidazol-4-yl)phenyl]-1-arylethanols, ethyl 3-[4-(1,2-dimethyl-5-nitro-1H-imidazol-4-yl)-phenyl]-2-hydroxypropanoate and 2-[4-(1,2-dimethyl-5-nitro-1H-imidazol-4-yl)benzyl]-2-hydroxy-acenaphthylen-1(2H)-one from the reactions of(More)
We present herein an extension of the TDAE strategy using original heterocyclic carbaldehyde as electrophiles. We also evaluate the influence of the presence of nitro group on the reactivity. The TDAE-initiated reactions of various halomethyl and gem-dihalomethyl derivatives with non-nitrated carbaldehyde 1 or 2 formed the expected products accompagnied by(More)
Neuroblastoma is an aggressive pediatric malignancy with significant chemotherapeutic resistance. In order to obtain new compounds active on neuroblastoma cell lines, we investigated the reactivity of carbanion formed via TDAE in quinoxaline series. The new synthesized compounds were tested for their anti-proliferative activity on two neuroblastoma cell(More)
Three convenient methods of reduction of the nitro group of 5-nitroimidazoles and 5-nitrothiazole that bear a diethylmethylene malonate group in an ortho-like position with respect to the nitro group and cyclization of the resulting amino derivatives are reported. These reactions afforded the target bicyclic 2-pyridones in good to excellent yields.
The synthesis of the title compounds was achieved using ethyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (1) as starting material. The reaction of the amino ester 1 with phenylisothiocyanate in boiling ethanol afforded the thiourea derivative 5. The cyclization reactions of 5 under different reaction conditions led to different(More)