Learn More
Natural transformation is a mechanism for genetic exchange in many bacterial genera. It proceeds through the uptake of exogenous DNA and subsequent homology-dependent integration into the genome. In Streptococcus pneumoniae, this integration requires the ubiquitous recombinase, RecA, and DprA, a protein of unknown function widely conserved in bacteria. To(More)
Bacteria encode a single-stranded DNA (ssDNA) binding protein (SSB) crucial for genome maintenance. In Bacillus subtilis and Streptococcus pneumoniae, an alternative SSB, SsbB, is expressed uniquely during competence for genetic transformation, but its precise role has been disappointingly obscure. Here, we report our investigations involving comparison of(More)
We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter)) as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter) interactome using GFP fusions and by Tap-tag and biochemical analysis. It(More)
In bacteria, transformation and restriction-modification (R-M) systems play potentially antagonistic roles. While the former, proposed as a form of sexuality, relies on internalized foreign DNA to create genetic diversity, the latter degrade foreign DNA to protect from bacteriophage attack. The human pathogen Streptococcus pneumoniae is transformable and(More)
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is(More)
Natural genetic transformation has been proposed as the bacterial equivalent of eukaryotic sexual reproduction, promoting genetic diversity. 1 Transformation involves internalization of foreign DNA in the form of single strands (ss), generated from a double-stranded (ds) sub-strate, which are recombined into the host genome by homology. Transformation is a(More)
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have(More)
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by(More)
Bacteria have evolved various inducible genetic programs to face many types of stress that challenge their growth and survival. Competence is one such program. It enables genetic transformation, a major horizontal gene transfer process. Competence development in liquid cultures of Streptococcus pneumoniae is synchronized within the whole cell population.(More)