Patrice L. Baldeck

Learn More
Because of the spreading of nonlinear microscopies in biology, there is a strong demand for specifically engineered probes in these applications. Herein, we report on the imaging properties in living cells and nude mice brains of recently developed water soluble blue fluorophores that show efficient diffusion through cell membranes and blood-brain barriers.(More)
One of the relevant directions that nanotechnology is taking nowadays is connected with nanomedicine and specifically related to the use of light and nanoparticles in early diagnosis and effective therapeutics of cancer. Noble-metal nanoparticles can act under laser irradiation as effective photothermal transducers for triggering localized hyperthermia of(More)
Fabrication of submicrometer structures by two-photon-initiated polymerization is performed with an inexpensive and low-power microlaser. This is made possible by the design of photoinitiators with strong two-photon absorption cross sections. We analyze the influence of both material properties and irradiation conditions on the two-photon polymerization(More)
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic(More)
Numerous research efforts are investigating the possibility of using light interactions with metallic nanoparticles to improve the fluorescence properties of nearby molecules. Few investigations have considered the encapsulation of molecules in metallic nanocavities. In this paper, we present the optical properties of new hybrid nanoparticles consisting of(More)
The effectiveness of a therapeutic agent for cancer stands in its ability to reduce and eliminate tumors without harming the healthy tissue nearby. Nanoparticles peripherally conjugated with targeting moieties offer major improvements in therapeutics through site specificity. In this study we demonstrate this approach by targeting the folate receptor of(More)
We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads(More)
Archimedes micro-screws have been fabricated by three-dimensional two-photon polymerization using a Nd:YAG Q-switched microchip laser at 532nm. Due to their small sizes they can be easily manipulated, and made to rotate using low power optical tweezers. Rotation rates up to 40 Hz are obtained with a laser power of 200 mW, i.e. 0.2 Hz/mW. A photo-driven(More)
In this work we introduce a new class of multifunctional photodynamic agents based on the coupling of photosensitizer molecules with noble metal nanoparticles, which can be efficiently activated under low light intensity. The favourable modification of the photophysical properties of methylene blue (MB) in MB-loaded Pluronic-nanogold hybrids (Au-PF127-MB)(More)