Patrice Desaulniers

Learn More
Rat motor nerve terminals and the endplates they interact with exhibit changes to varying patterns of use, as when exposed to increased activation in the form of endurance exercise training. The extent to which these changes affect neuromuscular transmission efficacy is uncertain. In this study, the effects of habitual exercise on the electrophysiological(More)
The aim of the study was to test the hypothesis that a 16 week endurance training program would alter the abundance of endplate-associated nicotinic acetylcholine receptors (nAChR) in various rat skeletal muscles. We found a 20% increase in endplate-specific [125I]alpha-bungarotoxin binding in several muscles of trained rats, accompanied by equal(More)
To better understand the effect of muscle hypertrophy on the physiological properties of transmitter release, we investigated neuromuscular transmission (NMT) efficacy in overloaded rat plantaris muscle in situ. In the overload group, following bilateral tenotomy of plantaris synergists, rats were confined to wheel-cages. Age-matched rats in the control(More)
Increased neuromuscular activity is known to provoke morphological and functional adaptations at the neuromuscular synapse. Most of these changes have been documented following endurance exercise training programmes. In this study, the effect of rat soleus muscle overload produced by tenotomy plus voluntary wheel-cage activity on neuromuscular transmission(More)
Studies dealing with neuromuscular transmission efficacy typically employ continuous patterns of activation to demonstrate decrements in endplate potential (epp) amplitude. Recent evidence from rat diaphragm muscle has shown that including periods of quiescence to the stimulation protocol allows epp amplitude to recover between series of contractions.(More)
  • 1