Learn More
The time course of changes in the properties of mitochondria from oxidative muscle of rainbow trout was examined during warm (15 degrees C) and cold (5 degrees C) acclimation. Mitochondrial oxidative capacities showed a biphasic response during thermal acclimation: at a given assay temperature, capacities first increased and then decreased during warm(More)
BACKGROUND Sequential accumulation of M1 and M2 macrophages is critical for skeletal muscle recovery after an acute injury. While M1 accumulation is believed to rely on monocyte infiltration, the mechanisms of M2 accumulation remain controversial, but could involve an infiltrating precursor. Yet, strong depletion of monocytes only partially impairs skeletal(More)
Neutrophils phagocyte necrotic debris and release cytokines, enzymes, and oxidative factors. In the present study, we investigated the contribution of neutrophils to muscle injury, dysfunction, and recovery using an unloading and reloading model. Mice were submitted to 10 days of hindlimb unloading and were transiently depleted in neutrophils with(More)
The cytopharyngeal apparatus in the Nassulinid ciliates Nassula and Furgasonia is a highly specialized microtubular/filamentous organelle designed for ingestion of organisms such as filamentous bacteria. From studies on living cells, it was previously shown that this organelle, also called "feeding basket," guides the filamentous bacteria and manipulates(More)
Freshly isolated human monocytes, which do not contain cell-surface mannose-specific receptors, bind mannose 6-phosphate and actively endocytose mannose 6-phosphate-bearing neoglycoproteins (6-P-Man-F-BSA). Three days after isolation, human monocytes endocytose very actively 6-P-Man-F-BSA as well as Man-F-BSA, and the endocytosed neoglycoproteins are(More)
Protein tyrosine phosphatase 1C (PTP1C) was the first member of the protein tyrosine phosphatase family demonstrated to contain the src homology 2 (SH2) domain. This enzyme is believed to play a role in regulating downstream signaling in hematopoietic cells since it was predominantly expressed in these cells. However, recent studies have revealed that the(More)
Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates(More)
Previously, we described a heart-reactive monoclonal antibody (MAb), 10A1, derived from a coxsackievirus B3 (CVB3)-infected mouse. This MAb selectively inhibits infection of HeLa cells and myocytes with the myocarditic virus variant (CVB3W). A plaque-purified variant (H3) of CVB3W was isolated from the heart of an infected animal, and a second virus(More)
PTP1C, an SH2 domain-containing protein-tyrosine phosphatase, is predominantly expressed in hematopoietic cells, in which it negatively regulates cellular signaling. However, this enzyme is also expressed in many non-hematopoietic cells. We demonstrate here that in non-hematopoietic 293 cells, overexpression of a catalytically inactive mutant of PTP1C(More)
SHP-1-mediated dephosphorylation of protein tyrosine residues is central to the regulation of several cell signaling pathways, the specificity of which is dictated by the intrinsic affinity of SH2 domains for the flanking sequences of phosphotyrosine residues. By using a modified yeast two-hybrid system and SHP-1 as bait, we have cloned a human cDNA,(More)