#### Filter Results:

#### Publication Year

1991

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Patric R. J. Östergård
- Discrete Applied Mathematics
- 2002

- Patric R. J. Östergård
- Nord. J. Comput.
- 1999

- Mattias Svanström, Patric R. J. Östergård, Galina T. Bogdanova
- IEEE Trans. Information Theory
- 2002

- Petteri Kaski, Patric R. J. Östergård
- Math. Comput.
- 2004

- Andries E. Brouwer, Heikki O. Hämäläinen, Patric R. J. Östergård, N. J. A. Sloane
- IEEE Trans. Information Theory
- 1998

— Upper and lower bounds are presented for the maximal possible size of mixed binary/ternary error-correcting codes. A table up to length 13 is included. The upper bounds are obtained by applying the linear programming bound to the product of two association schemes. The lower bounds arise from a number of different constructions.

- M. Mattas, Patric R. J. Östergård
- IEEE Transactions on Information Theory
- 2005

A new uniquely decodable (UD) code pair for the two-user binary adder channel (BAC) is presented. This code pair leads to an improved bound for the zero-error capacity region of such a channel. The highest known rate for a UD code pair for the two-user BAC is thereby improved to (log/sub 2/240)/6/spl ap/1.3178. It is also demonstrated that the problem of… (More)

- Ronald L. Graham, Boris D. Lubachevsky, Kari J. Nurmela, Patric R. J. Östergård
- Discrete Mathematics
- 1998

The problem of finding packings of congruent circles in a circle, or, equivalently, of spreading points in a circle, is considered. Two packing algorithms are discussed, and the best packings found of up to 65 circles are presented.

- Kari J. Nurmela, Patric R. J. Östergård
- Discrete & Computational Geometry
- 1999

The problem of nding the maximum radius of n non-overlapping equal circles in a unit square is considered. A computer-aided method for proving global optimality of such packings is presented. This method is based on recent results by De Groot, Monagan, Peik-ert, and WWrtz. As an example, it is shown how the method can be used to get an optimality proof for… (More)

- Alexander A. Davydov, Patric R. J. Östergård
- Eur. J. Comb.
- 2000

A set of points, S ⊆ P G(r, q), is said to be-saturating if, for any point x ∈ P G(r, q), there exist + 1 points in S that generate a subspace in which x lies. The cardinality of a smallest possible set S with this property is denoted by k(r, q,). We give a short survey of what is known about k(r, q, 1) and present new results for k(r, q, 2) for small… (More)

- Alexander A. Davydov, Patric R. J. Östergård
- IEEE Trans. Information Theory
- 2001