Patrícia P. Coltri

Learn More
BACKGROUND The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory(More)
NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human(More)
Eukaryotic ribosome biogenesis requires the function of a large number of trans-acting factors which interact transiently with the nascent pre-rRNA and dissociate as the ribosomal subunits proceed to maturation and export to the cytoplasm. Loss-of-function mutations in human trans-acting factors or ribosome components may lead to genetic syndromes. In a(More)
Spliceosome assembly requires several structural rearrangements to position the components of the catalytic core. Many of these rearrangements involve successive strengthening and weakening of different RNA:RNA and RNA:proteins interactions within the complex. To gain insight into the organization of the catalytic core of the spliceosome arrested between(More)
Splicing of primary transcripts is an essential process for the control of gene expression. Specific conserved sequences in premature transcripts are important to recruit the spliceosome machinery. The Saccharomyces cerevisiae catalytic spliceosome is composed of about 60 proteins and 5 snRNAs (U1, U2, U4/U6 and U5). Among these proteins, there are core(More)
Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected(More)
The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected(More)
  • 1