Patrícia Akemi Assato

Learn More
Understanding the possible methodologies for the rapid and inexpensive identification of fungal infections is essential for disease diagnosis, but there are some limitations. To help with this problem, serological methods that detect antigens or antibodies are widely used and are useful for the diagnosis of paracoccidioidomycosis (PCM) through the detection(More)
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA)(More)
Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts.(More)
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is(More)
The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a(More)
The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had(More)
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread(More)
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA(More)
14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic(More)
Apoptosis is considered an escape mechanism from the host immune system for the fungus Paracoccidioides spp, and it serves as a vehicle for entry into macrophages without stimulating microbicidal activities. Recently, gp43 of P. brasiliensis was demonstrated to be involved in this process. Therefore, as a new therapeutic alternative, it is very important to(More)