Pathumwadee Intharathep

Learn More
Molecular dynamics simulations of the drug-resistant M2 mutants, A30T, S31N, and L26I, were carried out to investigate the inhibition of M2 activity using amantadine (AMT). The closed and open channel conformations were examined via non- and triply protonated H37. For the nonprotonated state, these mutants exhibited zero water density in the conducting(More)
In order to understand how rimantadine (RMT) inhibits the proton conductance in the influenza A M2 channel via the recently proposed "allosteric mechanism", molecular dynamics simulations were applied to the M2-tetrameric protein with four RMTs bound outside the channel at the three protonation states: the 0H-closed, 1H-intermediate and 3H-open situations.(More)
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the(More)
A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to investigate solvation structure and dynamics of NH(4) (+) in water. The most interesting region, the sphere includes an ammonium ion and its first hydration shell, was treated at the Hartree-Fock level using DZV basis set, while the rest(More)
  • 1