Pathomwat Wongrattanakamon

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
In this work, molecular docking, pharmacophore modeling and molecular dynamics (MD) simulation were rendered for the mouse P-glycoprotein (P-gp) (code: 4Q9H) and bioflavonoids; amorphigenin, chrysin, epigallocatechin, formononetin and rotenone including a positive control; verapamil to identify protein-ligand interaction features including binding(More)
Inhibition of P-glycoprotein (P-gp)'s function may conduct significant changes in the prescription drugs' pharmacokinetic profiles and escalate potential risks in taking place of drug/herb-drug interactions. Computational modeling was advanced to scrutinize some bioflavonoids which play roles in herb-drug interactions as P-gp inhibitors utilizing molecular(More)
P-glycoprotein (P-gp) is a 170-kDa membrane protein. It provides a barrier function and help to excrete toxins from the body as a transporter. Some bioflavonoids have been shown to block P-gp activity. To evaluate the important amino acid residues within nucleotide binding domain 1 (NBD1) of P-gp that play a key role in molecular interactions with(More)
The data is obtained from exploring the modulatory activities of bioflavonoids on P-glycoprotein function by ligand-based approaches. Multivariate Linear-QSAR models for predicting the induced/inhibitory activities of the flavonoids were created. Molecular descriptors were initially used as independent variables and a dependent variable was expressed as(More)
  • 1