Pasquale Delogu

Learn More
A computer-aided detection (CAD) system for the identification of small pulmonary nodules in low-dose and thin-slice CT scans has been developed. The automated procedure for selecting the nodule candidates is mainly based on a filter enhancing spherical-shaped objects. A neural approach based on the classification of each single voxel of a nodule candidate(More)
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists(More)
In this work the implementation of a database of digitized mammograms is described. The digitized images were collected since 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals, as a first step in order to develop and implement a Computer Aided Detection (CAD) system. 3369 mammograms were collected from 967(More)
Computerized methods have recently shown a great potential in providing radiologists with a second opinion about the visual diagnosis of the malignancy of mammographic masses. The computer-aided diagnosis (CAD) system we developed for the mass characterization is mainly based on a segmentation algorithm and on the neural classification of several features(More)
OBJECTIVES The next generation of high energy physics (HEP) experiments requires a GRID approach to a distributed computing system: the key concept is the Virtual ORGANISATION (VO), a group of distributed users with a common goal and the will to share their resources. METHODS A similar approach, applied to a group of hospitals that joined the GPCALMA(More)
The implementation of a database of digitised mammograms is discussed. The digitised images were collected beginning in 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals as a first step in developing and implementing a computer-aided detection (CAD) system. All 3,369 mammograms were collected from 967 patients(More)
Mammography is widely recognized as the most reliable technique for early detection of breast cancers. Automated or semi-automated computerized classification schemes can be very useful in assisting radiologists with a second opinion about the visual diagnosis of breast lesions, thus leading to a reduction in the number of unnecessary biopsies. We present a(More)
PURPOSE It is estimated that during mammographic screening programs radiologists fail to detect approximately 25% of breast cancers visible on retrospective review; this percentage rises to 50% if minimal signs are considered. Independent double reading is now strongly recommended as it allows to reduce the rate of false negative examinations by 5-15%.(More)
The GPCALMA (Grid Platform for Computer Assisted Library for MAmmography) collaboration involves several departments of physics, INFN (National Institute of Nuclear Physics) sections, and italian hospitals. The aim of this collaboration is developing a tool that can help radiologists in early detection of breast cancer. GPCALMA has built a large distributed(More)
The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To(More)