Learn More
We report on the observation of the strong-coupling regime between the excitonic transition of a single GaAs quantum dot and a discrete optical mode of a microdisk microcavity. Photoluminescence is performed at various temperatures to tune the quantum dot exciton with respect to the optical mode. At resonance, we observe a clear anticrossing behavior,(More)
Bright sources of indistinguishable single photons are strongly needed for the scalability of quantum information processing. Semiconductor quantum dots are promising systems to build such sources. Several works demonstrated emission of indistinguishable photons while others proposed various approaches to efficiently collect them. Here we combine both(More)
We investigate the effect of interactions in zero-dimensional polariton condensates. The shape of the condensate wave function is shown to be modified by repulsive interactions with the reservoir of uncondensed excitons. In large micropillar cavities, when uncondensed excitons are located at the center, the condensate is ejected toward the pillar edges. The(More)
Optomechanical coupling between a mechanical oscillator and light trapped in a cavity increases when the coupling takes place in a reduced volume. Here we demonstrate a GaAs semiconductor optomechanical disk system where both optical and mechanical energy can be confined in a subwavelength scale interaction volume. We observe a giant optomechanical coupling(More)
A source of triggered entangled photon pairs is a key component in quantum information science; it is needed to implement functions such as linear quantum computation, entanglement swapping and quantum teleportation. Generation of polarization entangled photon pairs can be obtained through parametric conversion in nonlinear optical media or by making use of(More)
Using far-field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong(More)
Polariton lasing is demonstrated on the zero-dimensional states of single GaAs/GaAlAs micropillar cavities. Under nonresonant excitation, the measured polariton ground-state occupancy is found as large as 10(4). Changing the spatial excitation conditions, competition between several polariton lasing modes is observed, ruling out Bose-Einstein condensation.(More)
We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate(More)
We report on a new type of optical nonlinearity in a polariton p-i-n microcavity. Abrupt switching between the strong and weak coupling regime is induced by controlling the electric field within the cavity. As a consequence, bistable cycles are observed for low optical powers (2-3 orders of magnitude less than for Kerr induced bistability). Signatures of(More)
We demonstrate strong confinement of the optical field by depositing a micron sized metallic disk on a planar distributed Bragg reflector. Confined Tamm plasmon modes are evidenced both experimentally and theoretically, with a lateral confinement limited to the disk area and strong coupling to TE polarized fields. Single quantum dots controllably coupled to(More)