Pascale Legault

Learn More
Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB(More)
The structure of the complex formed by the arginine-rich motif of the transcriptional antitermination protein N of phage lambda and boxB RNA was determined by heteronuclear magnetic resonance spectroscopy. A bent alpha helix in N recognizes primarily the shape and negatively charged surface of the boxB hairpin through multiple hydrophobic and ionic(More)
A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were(More)
General transcription factor IIH (TFIIH) is recruited to the preinitiation complex (PIC) through direct interactions between its p62 (Tfb1) subunit and the carboxyl-terminal domain of TFIIEalpha. TFIIH has also been shown to interact with a number of transcriptional activator proteins through interactions with the same p62 (Tfb1) subunit. We have determined(More)
FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is strongly enhanced by the carboxyl-terminal domain of RAP74 (cterRAP74, residues 436-517), and this stimulatory effect of TFIIF can be blocked by TFIIB. It has been shown that cterRAP74 and the core domain(More)
The NMR solution structure of a lead-dependent ribozyme, known as the leadzyme, is presented. This ribozyme is among the smallest of the known catalytic RNAs, with an active site consisting of a six-nucleotide asymmetric internal loop. This loop has a roughly double-helical structure, including a protonated adenine-cytosine wobble base-pair, that positions(More)
The in vitro selected lead-dependent ribozyme is among the smallest and simplest of the known catalytic RNA motifs and has a unique metal ion specificity for divalent lead. The conformation and dynamics of this ribozyme are analyzed here by NMR and chemical probing experiments. Complete assignments of the 1H, 13C, and 15N resonances have been made, and the(More)
Substrate cleavage by the Neurospora Varkud satellite (VS) ribozyme involves a structural change in the stem-loop I substrate from an inactive to an active conformation. We have determined the NMR solution structure of a mutant stem-loop I that mimics the active conformation of the cleavage site internal loop. This structure shares many similarities, but(More)
XPC/Rad4 (human/yeast) recruits transcription faction IIH (TFIIH) to the nucleotide excision repair (NER) complex through interactions with its p62/Tfb1 and XPB/Ssl2 subunits. TFIIH then recruits XPG/Rad2 through interactions with similar subunits and the two repair factors appear to be mutually exclusive within the NER complex. Here, we show that Rad4(More)