Learn More
Spike-sorting techniques attempt to classify a series of noisy electrical waveforms according to the identity of the neurons that generated them. Existing techniques perform this classification ignoring several properties of actual neurons that can ultimately improve classification performance. In this study, we propose a more realistic spike train(More)
The adsorption or adhesion of large particles (proteins, colloids, cells, . . . ) at the liquid-solid interface plays an important role in many diverse applications. Despite the apparent complexity of the process, two features are particularly important: 1) the adsorption is often irreversible on experimental time scales and 2) the adsorption rate is(More)
An event-driven molecular dynamics simulation of inelastic hard spheres contained in a cylinder and subject to strong vibration reproduces accurately experimental results [R. D. Wildman et al., Phys. Rev. Lett. 86, 3304 (2001)] for a system of vibrofluidized glass beads. In particular, we are able to obtain the velocity field and the density and temperature(More)
We investigate the influence of space curvature, and of the associated frustration, on the dynamics of a model glass former: a monatomic liquid on the hyperbolic plane. We find that the system's fragility, i.e., the sensitivity of the relaxation time to temperature changes, increases as one decreases the frustration. As a result, curving space provides a(More)
We study the relation between out-of-equilibrium (hysteretic) and equilibrium behavior in the capillary condensation of Ñuids in disordered mesoporous solids. Using mean-Ðeld density functional theory, we show that a simple lattice-gas model can reproduce the major experimental observations and that the classical van der Waals picture of metastability fails(More)
We investigate both analytically and by numerical simulation the kinetics of a microscopic model of hard rods adsorbing on a linear substrate, a model that is relevant for compaction of granular materials. The computer simulations use an event-driven algorithm that is particularly efficient at very long times. For a small, but finite desorption rate, the(More)
We apply the statistical mechanical approach proposed by Edwards and co-workers to the parking-lot model, a model that reproduces the main features of the phenomenology of vibrated granular materials. We first build the compactivity-based measure for the case of vanishingly small tapping strength and then generalize the approach to finite tapping strengths(More)
– We study a 3-dimensional Ising model in which the tendency to order due to short-range ferromagnetic interactions is frustrated by competing long-range (Coulombic) interactions. Complete ferromagnetic ordering is impossible for any nonzero value of the frustration parameter, but the system displays a variety of phases characterized by periodically(More)
We have investigated, by Monte Carlo simulation, the phase diagram of a three-dimensional Ising model with nearest-neighbor ferromagnetic interactions and small, but long-range (Coulombic) antiferromagnetic interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries, which allows us to obtain the main(More)
We propose that the salient feature to be explained about the glass transition of supercooled liquids is the temperature-controlled superArrhenius activated nature of the viscous slowing down, more strikingly seen in weakly-bonded, fragile systems. In the light of this observation, the relevance of simple models of spherically interacting particles and that(More)