Pascal R. Verdonck

Learn More
A numerical model based on the nonlinear, one-dimensional (1-D) equations of pressure and flow wave propagation in conduit arteries is tested against a well-defined experimental 1:1 replica of the human arterial tree. The tree consists of 37 silicone branches representing the largest central systemic arteries in the human, including the aorta, carotid(More)
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in(More)
Patient-specific simulations are widely used to investigate the local hemodynamics within realistic morphologies. However, pre-processing and mesh generation are time consuming, operator dependent, and the quality of the resulting mesh is often suboptimal. Therefore, a semi-automatic methodology for patient-specific reconstruction and structured meshing of(More)
Despite extensive attention to abdominal aortic aneurysm (AAA) in the biomedical engineering community, its effect on aortic hemodynamics and arterial wave reflection has not been addressed before. We used experimental and numerical methods, relying on a realistic AAA geometry constructed from patient computer tomography scans (CT-scans), to study this(More)
A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte distributions. Parameter studies were performed on each(More)
Numerical simulations have proven to be a valuable tool to investigate the mechanical behavior of stents. These computer models require a considerable amount of preprocessing and computational effort and consequently there is a continuous need for accurate simplifications and automation. For example, it was recently shown that using beam elements instead of(More)
BACKGROUND AND AIM OF THE STUDY In-vitro studies on the ATS heart valve have indicated that valve opening is less in an expanding conduit than in a straight conduit. METHODS Bileaflet valve behavior was studied using a new computational fluid-structure interaction model. A three-dimensional model of the ATS valve was studied in two geometries, simulating(More)