Pascal Poignard

Learn More
Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1-infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1-infected individuals, primarily infected with non-clade B viruses, and have selected donors for monoclonal(More)
Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned(More)
Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies(More)
The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution,(More)
The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers(More)
Neutralizing antibodies are thought to be crucial for HIV vaccine protection, but studies in animal models suggest that high antibody concentrations are required. This is a major potential hurdle for vaccine design. However, these studies typically apply a large virus inoculum to ensure infection in control animals in single-challenge experiments. In(More)
Alanine scanning mutagenesis was performed on monomeric gp120 of human immunodeficiency virus type 1 to systematically identify residues important for gp120 recognition by neutralizing and nonneutralizing monoclonal antibodies (MAbs) to the CD4 binding site (CD4bs). Substitutions that affected the binding of broadly neutralizing antibody b12 were compared(More)
Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact(More)
Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations(More)
Anti-human immunodeficiency virus type 1 (HIV-1) antibodies whose binding to gp120 is enhanced by CD4 binding (CD4i antibodies) are generally considered nonneutralizing for primary HIV-1 isolates. However, a novel CD4i-specific Fab fragment, X5, has recently been found to neutralize a wide range of primary isolates. To investigate the precise nature of the(More)