Pascal Paillier

Learn More
This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to public-key cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our(More)
We identify and fill some gaps with regard to consistency (the extent to which false positives are produced) for public-key encryption with keyword search (PEKS). We define computational and statistical relaxations of the existing notion of perfect consistency, show that the scheme of Boneh et al. (Advances in Cryptology—EUROCRYPT 2004, ed. by C. Cachin, J.(More)
This paper puts forward new efficient constructions for public-key broadcast encryption that simultaneously enjoy the following properties: receivers are stateless; encryption is collusion-secure for arbitrarily large collusions of users and security is tight in the standard model; new users can join dynamically i.e. without modification of user decryption(More)
We provide evidence that the unforgeability of several discrete-log based signatures like Schnorr signatures cannot be equivalent to the discrete log problem in the standard model. This contradicts in nature well-known proofs standing in weakened proof methodologies, in particular proofs employing various formulations of the Forking Lemma in the random(More)
This paper proposes two new public-key cryptosystems semantically secure against adaptive chosen-ciphertext attacks. Inspired from a recently discovered trapdoor technique based on composite-degree residues, our converted encryption schemes are proven, in the random oracle model, secure against active adversaries (IND-CCA2) under the assumptions that the(More)
As such, public-key encryption with keyword search (a.k.a PEKS or searchable encryption) does not allow the recipient to decrypt keywords i.e. encryption is not invertible. This paper introduces searchable encryption schemes which enable decryption. An additional feature is that the decryption key and the trapdoor derivation key are totally independent,(More)
GRAIN-v1 is a stream cipher that has been selected in the final portfolio of the eSTREAM project. GRAIN-128 is a variant of GRAIN-v1. The best known mathematical attack against GRAIN-128 is the brute force key-search. This paper introduces a fault attack on GRAIN-128 based on a realistic fault model and explores possible improvements of the attack. We also(More)
A common practice to encrypt with RSA is to first apply a padding scheme to the message and then to exponentiate the result with the public exponent; an example of this is OAEP. Similarly, the usual way of signing with RSA is to apply some padding scheme and then to exponentiate the result with the private exponent, as for example in PSS. Usually, the RSA(More)