Learn More
A transient finite-element model has been developed to simulate an extracellular action potential recording in a tissue slice by a planar microelectrode array. The thin-film approximation of the active neuron membrane allows the simulation within single finite-element software of the intracellular and extracellular potential fields. In comparison with a(More)
Biotinylated bacteria were immobilized onto biotin/avidin modified electrode surfaces. Firstly, an electrospotting deposition method, followed by fluorescence microscopy, showed that bacteria were specifically grafted onto a gold surface. Fluorescence intensity versus the quantity of bacteria deposited on the surface was correlated, allowing determination(More)
Thin film technology takes more and more importance in the development of biomedical devices dedicated to functional neurostimulation. Our research about the design of implant neurostimulating electrode is oriented toward thin film cuff electrodes based on a polyimide substrate covered by a chromium/gold/Pt film. The chromium/gold sputtered film serves as(More)
The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism.(More)
The concept of DNA biosensors is sustained by the need for rapid and highly sensitive analytical tools for genetic detection. Their implementation is based on three key steps: (i) immobilization of single-stranded oligonucleotide probes onto a substrate; (ii) hybridization and (iii) reading. These steps involve complementary knowledge in various(More)
We report on the fabrication and characterization of an 8 × 8 multichannel Boron Doped Diamond (BDD) ultramicro-electrode array (UMEA). The device combines both the assets of microelectrodes, resulting from conditions in mass transport from the bulk solution toward the electrode, and of BDD's remarkable intrinsic electrochemical properties. The UMEAs were(More)
Customized pores are smart components that find challenging applications in a variety of fields including purification membranes and biosensing systems. The incorporation of recognition probes within pores is therefore a challenge, due to the technical difficulty of delimiting the area functionalized and obtaining the localized, specific chemical(More)
Pseudomonas aeruginosa is one of the most common bacteria responsible for nosocomial infections. To imagine new therapies, understanding virulence mechanisms and the associated communication system of the bacterium (its quorum sensing) is a target of the first importance. Electrochemistry is a promising tool for real-time in situ monitoring of electroactive(More)
In this paper a comparison between three commercially-available, screen-printable graphite inks for the construction of phenolic biosensors is made. The enzyme tyrosinase was immobilised within a polymer matrix and the substrate catechol was used to characterise the bio-electroanalytical response of each electrode. Biosensors fabricated from Gwent graphite(More)