Learn More
A transient finite-element model has been developed to simulate an extracellular action potential recording in a tissue slice by a planar microelectrode array. The thin-film approximation of the active neuron membrane allows the simulation within single finite-element software of the intracellular and extracellular potential fields. In comparison with a(More)
Biotinylated bacteria were immobilized onto biotin/avidin modified electrode surfaces. Firstly, an electrospotting deposition method, followed by fluorescence microscopy, showed that bacteria were specifically grafted onto a gold surface. Fluorescence intensity versus the quantity of bacteria deposited on the surface was correlated, allowing determination(More)
Multi-electrode sensor arrays are made of soft and wet materials not easily examined by most microscopic techniques. In this paper, we have demonstrated that low-vacuum scanning electron microscopy (LVSEM) and energy-dispersive X-ray analysis (EDX) are adequate for studying the hydration, swelling, and possible delamination of multi-electrode sensor arrays.(More)
Thin film technology takes more and more importance in the development of biomedical devices dedicated to functional neurostimulation. Our research about the design of implant neurostimulating electrode is oriented toward thin film cuff electrodes based on a polyimide substrate covered by a chromium/gold/Pt film. The chromium/gold sputtered film serves as(More)
In the field of DNA sensing, DNA hybridisation detection is generally performed by fluorescence microscopy. However, fluorescence instrumentation is difficult to miniaturise in order to produce fully integrated DNA chips. In this context, electrochemical detection of DNA hybridisation may avoid this limitation. Therefore, the use of DNA intercalators is(More)
In this paper, we present different ways to detect DNA hybridization on a solid support. The grafting chemistry is based on the electro-controlled copolymerization of a pyrrole-modified oligonucleotide and pyrrole. This process allows an easy functionalization of conducting materials. Three kind of devices were studied: silicon chips bearing an array of(More)
Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the(More)
The concept of DNA biosensors is sustained by the need for rapid and highly sensitive analytical tools for genetic detection. Their implementation is based on three key steps: (i) immobilization of single-stranded oligonucleotide probes onto a substrate; (ii) hybridization and (iii) reading. These steps involve complementary knowledge in various(More)
The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism.(More)