Learn More
The human neonate and infant are unduly susceptible to infection with a wide variety of microbes. This susceptibility is thought to reflect differences from adults in innate and adaptive immunity, but the nature of these differences is incompletely characterized. The innate immune response directs the subsequent adaptive immune response after integrating(More)
Newborns and young infants suffer increased infectious morbidity and mortality as compared to older children and adults. Morbidity and mortality due to infection are highest during the first weeks of life, decreasing over several years. Furthermore, most vaccines are not administered around birth, but over the first few years of life. A more complete(More)
BACKGROUND Infants born prematurely are highly vulnerable to infections and also exhibit a high susceptibility to organ damage due to inflammation. METHODS To investigate homeostatic immune control early in life, we used advanced multiparameter flow cytometry to compare responses to multiple Toll-like receptor (TLR) ligands in single cells and mononuclear(More)
BACKGROUND AND OBJECTIVE Omega-3 long chain polyunsaturated fatty acid (LCPUFA) exposure can be associated with reduced neonatal morbidities. We systematically review the evidence for the benefits of omega-3 LCPUFAs for reducing neonatal morbidities in extremely preterm infants. METHODS Data sources were PubMed, Embase, Center for Reviews and(More)
Neonatal pain-related stress is associated with elevated salivary cortisol levels to age 18 months in children born very preterm, compared to full-term, suggesting early programming effects. Importantly, interactions between immune/inflammatory and neuroendocrine systems may underlie programming effects. We examined whether cortisol changes persist to(More)
Superantigens bind to major histocompatibility complex class II molecules on antigen-presenting cells and stimulate T cells. Staphylococcus aureus enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) bind to the same region of human lymphocyte antigen (HLA)-DR1 but do not compete with each other, which indicates that they bind to different subsets(More)
BACKGROUND The genetic basis of dysfunctional immune responses in necrotizing enterocolitis (NEC) remains unknown. We hypothesized that variants in nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) and autophagy (ATG) genes modulate vulnerability to NEC. METHODS We genotyped a multi-center cohort of premature infants with and(More)
The three-dimensional structure of the complex between a T cell receptor (TCR) beta chain (mouse Vbeta8.2Jbeta2.1Cbeta1) and the superantigen (SAG) staphylococcal enterotoxin C3 (SEC3) has been recently determined to 3.5 resolution. To evaluate the actual contribution of individual SAG residues to stabilizing the beta-SEC3 complex, as well as to investigate(More)
Superantigens bind to MHC class II-positive cells and stimulate T lymphocytes expressing specific V beta regions of the TCR. Two distinct regions of staphylococcal enterotoxin A superantigen (SEA) have been shown to affect the binding to MHC class II molecules. Results presented here demonstrate for the first time that the SEA-DR interaction can be affected(More)
In the face of the unique diversity and plasticity of the immune system pathogenic organisms have developed multiple mechanisms in adaptation to their hosts, including the expression of a particular class of molecules called superantigens. Bacterial superantigens are the most potent stimulators of T cells. The functional consequences of the expression of(More)