Pascal J. Bordé

Learn More
Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find(More)
High-contrast imaging from space must overcome two major noise sources to successfully detect a terrestrial planet angularly close to its parent star: photon noise from diffracted star light, and speckle noise from star light scattered by instrumentally-generated wavefront perturbation. Coronagraphs tackle only the photon noise contribution by reducing(More)
Aims. We report the discovery of very shallow (∆F/F ≈ 3.410−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods.(More)
We revisit the nulling interferometer performances that are needed for direct detection and the spectroscopic analysis of exoplanets, e.g., with the DARWIN [European Space Agency-SCI 12 (2000)] or TPF-I [JPL Publ. 05-5, (2005)] missions. Two types of requirement are found, one concerning the mean value of the instrumental nulling function (nl(lambda)) and(More)
We present a matched-filter based algorithm for transit detection and its application to simulated COROT light curves. This algorithm stems from the work by Bordé, Rouan & Léger (2003, A&A 405, 1137). We describe the different steps we intend to take to discriminate between planets and stellar companions using the three photometric bands provided by COROT.(More)
The detection of terrestrial planets by Darwin/TPF missions will require extremely high quality wavefronts. Single-mode fibers have proven to be powerful beam cleaning components in the near-infrared, but are currently not available in the mid-infrared where they would be critically needed for Darwin/TPF. In this paper, we present updated measurements on(More)
To detect Earth-like planets in the visible with a coronagraphic telescope, two major noise sources have to be overcome: the photon noise of the diffracted star light, and the speckle noise due to the star light scattered by instrumental defects. Coronagraphs tackle only the photon noise contribution. In order to decrease the speckle noise below the planet(More)
Context. The CoRoT mission, a pioneer in exoplanet searches from space, has completed its first 150 days of continuous observations of ∼12 000 stars in the galactic plane. An analysis of the raw data identifies the most promising candidates and triggers the ground-based follow-up. Aims. We report on the discovery of the transiting planet CoRoT-Exo-2b, with(More)