Pascal Challande

Learn More
We have previously shown that the decrease in large artery distensibility observed in patients with essential hypertension (HT group) was primarily due to an increase in distending pressure and not to hypertension-associated structural modifications of the artery, suggesting a functional adaptation of the wall material. To evaluate the elastic properties of(More)
Recent studies have shown that large-artery wall remodeling per se does not reduce distensibility in hypertension, indicating qualitative or quantitative changes in arterial components. The aim of the study was to determine in 1-year-old spontaneously hypertensive rats (SHRs) the changes in the elastic properties of large arteries, as assessed by the(More)
Our aim was to determine the structural factors that determine the mechanical adaptation of the carotid arterial wall in stroke-prone hypertensive rats (SHRSP). Distensibility-pressure and elastic modulus-stress curves assessed by in vivo echo-tracking measurements indicated a reduction in arterial stiffness in 13-week-old SHRSP compared with Wistar-Kyoto(More)
Arterial wall viscosity (AWV) is a potential source of energy dissipation in circulation. That arteries, which are known to be markedly viscous in vitro, have lower viscosity in vivo has been suggested but not demonstrated under similar pressure conditions. Endothelium, which may modulate AWV through smooth muscle tone, could contribute to the low level of(More)
The purpose of the present study was to determine the effects of chronic sinoaortic denervation on the mechanical properties and composition of the abdominal aorta in Wistar rats. We used a high-resolution echotracking system to determine in situ under physiological conditions of blood flow and arterial wall innervation the aortic diameter-, compliance-,(More)
To investigate a putative role for semicarbazide-sensitive amine oxidase (SSAO) in arterial extracellular matrix (ECM) organization, we compared arteries of growing Brown Norway (BN) rats after chronic administration of semicarbazide (SCZ) and beta-aminopropionitrile (BAPN), two inhibitors with different properties and relative specificities for SSAO and(More)
Arterial stiffness is recognized as a risk factor for many cardiovascular diseases. Aldosterone via its binding to and activation of the mineralocorticoid receptors (MRs) is a main regulator of blood pressure by controlling renal sodium reabsorption. Although both clinical and experimental data indicate that MR activation by aldosterone is involved in(More)
This study determined the effects of long-term chemical sympathectomy with guanethidine (GN) on the mechanical properties and composition of the distal abdominal aorta in Wistar rats. GN was daily administered for 3 mo (3M-GN, from 1 to 12 wk), 5 wk (5W-GN, from 7 to 12 wk), and 8 days (8D-GN, from 11 to 12 wk). All experiments were performed at 12 wk of(More)
The relationships between steady and pulsatile pressures, smooth muscle tone, and arterial viscoelastic behavior remain a matter of controversy. We previously showed that arterial wall viscosity (AWV) was 3-fold lower in vivo than in vitro and suggested that in vivo active mechanisms could minimize intrinsic AWV to improve the efficiency of heart-vessel(More)
Adult Brown Norway (BN) rats exhibit numerous internal elastic lamina (IEL) ruptures in the abdominal aorta (AA) and a lower aortic elastin-to-collagen ratio (E/C) compared with other strains. We studied here AA mechanical properties in BN compared with control strains. AA stiffness (assessed by plotting elastic modulus/wall-stress curves obtained under(More)