Learn More
This paper is motivated by operating self service transport systems that flourish nowadays. In cities where such systems have been set up with bikes, trucks travel to maintain a suitable number of bikes per station. It is natural to study a version of the C-delivery TSP defined by Chalasani and Motwani in which, unlike their definition, C is part of the(More)
We study the weighted circuit constraint in the context of constraint programming. It appears as a substructure in many practical applications, particularly routing problems. We propose a domain filtering algorithm for the weighted circuit constraint that is based on the 1-tree relaxation of Held and Karp. In addition, we study domain filtering based on an(More)
We develop a tropical analogue of the simplex algorithm for linear programming. In particular, we obtain a combinatorial algorithm to perform one tropical pivoting step, including the computation of reduced costs, in O(n(m + n)) time, where m is the number of constraints and n is the dimension. 1. Introduction. The tropical semiring (T, ⊕,) is the set T = R(More)
We introduce an algorithm which solves mean payoff games in polynomial time on average, assuming the distribution of the games satisfies a flip invariance property on the set of actions associated with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which solves mean payoff games via linear feasibility problems over(More)
  • 1