Learn More
The human voice contains in its acoustic structure a wealth of information on the speaker's identity and emotional state which we perceive with remarkable ease and accuracy. Although the perception of speaker-related features of voice plays a major role in human communication, little is known about its neural basis. Here we show, using functional magnetic(More)
We used positron emission tomography to examine the response of human auditory cortex to spectral and temporal variation. Volunteers listened to sequences derived from a standard stimulus, consisting of two pure tones separated by one octave alternating with a random duty cycle. In one series of five scans, spectral information (tone spacing) remained(More)
We examine the functional characteristics of auditory cortical areas that are sensitive to spatial cues in the human brain, and determine whether they can be dissociated from parietal lobe mechanisms. Three positron emission tomography (PET) experiments were conducted using a speaker array permitting quasi free-field sound presentation within the scanner.(More)
To investigate the role of temporal processing in language lateralization, we monitored asymmetry of cerebral activation in human volunteers using positron emission tomography (PET). Subjects were scanned during passive auditory stimulation with nonverbal sounds containing rapid (40 msec) or extended (200 msec) frequency transitions. Bilateral symmetric(More)
An event-related protocol was designed to permit auditory fMRI studies minimally affected by the echo-planar noise artifact; a long time interval (TR = 10 s) between each cerebral volume acquisition was combined with stroboscopic data acquisition, and event-related curves were reconstructed with a 1-s resolution. The cerebral hemodynamic-response time(More)
The human voice is the carrier of speech, but also an "auditory face" that conveys important affective and identity information. Little is known about the neural bases of our abilities to perceive such paralinguistic information in voice. Results from recent neuroimaging studies suggest that the different types of vocal information could be processed in(More)
Voice is not only the vehicle of speech, it is also an 'auditory face' that conveys a wealth of information on a person's identity and affective state. In contrast to speech perception, little is known about the neural bases of our ability to perceive these various types of paralinguistic vocal information. Using functional magnetic resonance imaging(More)
Little is known on how voices are represented in the brain. We used fMRI to investigate whether parts of auditory cortex would be sensitive to the repetition of a speaker's voice. Subjects were scanned while passively listening to spoken syllables, presented in blocs in which either syllable or speaker were repeated. Only one cortical region, located in the(More)
Impairments in social interaction are a key feature of autism and are associated with atypical social information processing. Here we report functional magnetic resonance imaging (fMRI) results showing that individuals with autism failed to activate superior temporal sulcus (STS) voice-selective regions in response to vocal sounds, whereas they showed a(More)
The Montreal Affective Voices consist of 90 nonverbal affect bursts corresponding to the emotions of anger, disgust, fear, pain, sadness, surprise, happiness, and pleasure (plus a neutral expression), recorded by 10 different actors (5 of them male and 5 female). Ratings of valence, arousal, and intensity for eight emotions were collected for each(More)