Parviz Gharagozloo

Learn More
Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant(More)
Oxidative stress in the male germ line is thought to affect male fertility and impact upon normal embryonic development. Accordingly, fertility specialists are actively exploring the diagnosis of such stress in spermatozoa and evaluating the possible use of antioxidants to ameliorate this condition. In this review, evidence for the presence of oxidative(More)
STUDY QUESTION Does a novel antioxidant formulation designed to restore redox balance within the male reproductive tract, reduce sperm DNA damage and increase pregnancy rates in mouse models of sperm oxidative stress? SUMMARY ANSWER Oral administration of a novel antioxidant formulation significantly reduced sperm DNA damage in glutathione peroxidase 5(More)
Oxidative stress is known to compromise human sperm function and to activate the intrinsic apoptotic cascade in these cells. One of the key features of oxidatively stressed spermatozoa is the induction of a lipid peroxidation process that results in the formation of aldehydes potentially capable of disrupting sperm function through the formation of adducts(More)
Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm(More)
Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors,(More)
The Sperm Chromatin Structure Assay (SCSA®) is the pioneering sperm DNA fragmentation assay that precisely measures the percent of sperm in a semen sample that have Sperm DNA Damage (SDD), a negative factor for successful pregnancy. The SCSA® is a rapid, dual parameter, computer driven assay with diligent unbiased flow cytometer measurements on five to ten(More)
  • 1