Learn More
Quantitation of near infrared spectroscopic data in a scattering medium such as tissue requires knowledge of the optical pathlength in the medium. This can now be estimated directly from the time of flight of picosecond length light pulses. Monte Carlo modelling of light pulses in tissue has shown that the mean value of the time dispersed light pulse(More)
The Differential Pathlength Factor (DPF) has been measured for several different tissues. The results showed that the DPF varied with the type of tissue studied, and in the case of the adult calf with sex. However, the DPF for all tissues studied was constant once the inter optode spacing exceeded 2.5 cm. Thus, measurements can be made by NIR spectroscopy(More)
We have determined the spectral dependence of the temporal point spread functions of human tissues experimentally between 740 and 840 nm in transmittance measurements on the adult head, forearm, and calf (in vivo) and the infant head (post mortem) by using picosecond laser pulses and a streak camera detector. Two parameters are extracted from the temporal(More)
The time taken for an extremely short pulse of near-infrared laser light to traverse the heads of 6 preterm infants was measured after death. The values obtained were used to calculate a differential path length factor (DPF), defined as the mean distance travelled by the photons divided by the distance between the points where light entered and left the(More)
Trehalose-6-phosphate synthase is the key enzyme for biosynthesis of trehalose, the major soluble carbohydrate in resting cells of yeast. This enzyme was purified from a strain of Saccharomyces cerevisiae lacking vacuolar proteases. It was found to be a multimeric protein of 630 kDa. Monoclonal antibodies were raised against its smallest subunit (56 kDa)(More)
A noninvasive method of measuring hemoglobin flow through an organ by near-infrared spectroscopy (NIRS) is described that allows blood flow to be calculated. The method is derived from the Fick principle and uses a small change in arterial oxyhemoglobin concentration (brought about by a change in the fractional inspired O2 concentration) as an intravascular(More)
In order to quantify near-infrared spectroscopic (NIRS) data on an inhomogeneous medium, knowledge of the contribution of the various parts of the medium to the total NIRS signal is required. This is particularly true in the monitoring of cerebral oxygenation by NIRS, where the contribution of the overlying tissues must be known. The concept of the time(More)
We have been able by a Monte Carlo technique to generate the point spread function (PSF) for light in tissue for a generalized range of tissue characteristics. We have demonstrated that these can be described by an equation containing a gaussian, diffusion and exponential term. The PSF equation will allow one to estimate the limits of spatial resolution(More)