Parham Ghorbanian

Learn More
Alzheimer’s disease (AD) is associated with deficits in a number of cognitive processes and executive functions. Moreover, abnormalities in the electroencephalogram (EEG) power spectrum develop with the progression of AD. These features have been traditionally characterized with montage recordings and conventional spectral analysis during resting(More)
In this work, we propose a novel phenomenological model of the EEG signal based on the dynamics of a coupled Duffing-van der Pol oscillator network. An optimization scheme is adopted to match data generated from the model with clinically obtained EEG data from subjects under resting eyes-open (EO) and eyes-closed (EC) conditions. It is shown that a coupled(More)
In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the(More)
We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer’s disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single(More)
OBJECTIVE In this paper a new nonlinear system identification approach is developed for dynamical quantification of cardiovascular regulation. This approach is specifically focused on the identification of the heart rate (HR) baroreflex mechanism. The principal objective of this paper is to improve the model accuracy in the estimation of HR by proposing a(More)
This paper is focused on the identification of the heart rate (HR) baroreflex mechanism using new nonlinear system identification approach. The proposed HR baroreflex model is based on inherent features of the autonomic nervous system for which we develop an adaptive neuro-fuzzy inference system (ANFIS) structure. The simulation results show significant(More)
  • 1