Ciriana Orabona6
Carmine Vacca6
6Ciriana Orabona
6Carmine Vacca
Learn More
Prediabetes and diabetes in nonobese diabetic (NOD) mice have been targeted by a variety of immunotherapies, including the use of a soluble form of cytotoxic T lymphocyte antigen 4 (CTLA-4) and interferon (IFN)-gamma. The cytokine, however, fails to activate tolerogenic properties in dendritic cells (DCs) from highly susceptible female mice early in(More)
The aryl hydrocarbon receptor (AhR) is a nuclear receptor regulating a wide range of biological and toxicological effects. Metabolites of L-tryptophan are able to bind and activate AhR, providing a link between tryptophan catabolism and a novel mechanism of protective tolerance, referred to as "disease tolerance". The notion that pharmacologic modulation of(More)
The predisposition of nonobese diabetic (NOD) mice to develop autoimmunity reflects deficiencies in both peripheral and central tolerance. Several defects have been described in these mice, among which aberrant antigen-presenting cell function and peroxynitrite formation. Prediabetes and diabetes in NOD mice have been targeted with different outcomes by a(More)
High amounts of glutamate are found in the brains of people with multiple sclerosis, an inflammatory disease marked by progressive demyelination. Glutamate might affect neuroinflammation via effects on immune cells. Knockout mice lacking metabotropic glutamate receptor-4 (mGluR4) were markedly vulnerable to experimental autoimmune encephalomyelitis (EAE, a(More)
Dendritic cells (DC) sense saprophytic yeast and pathogenic, filamentous forms of Candida albicans in a specific way, resulting in disparate patterns of DC and T(h) cell activation. Using human and murine DC, such disparate patterns could be traced to the exploitation of distinct recognition receptors. Although usage of mannose receptors led to protective(More)
Type I diabetes mellitus is caused by autoimmune destruction of pancreatic beta cells, and effective treatment of the disease might require rescuing beta cell function in a context of reinstalled immune tolerance. Sertoli cells (SCs) are found in the testes, where their main task is to provide local immunological protection and nourishment to developing(More)
  • Antonella De Luca, Agostinho Carvalho, Cristina Cunha, Rossana G. Iannitti, Lucia Pitzurra, Gloria Giovannini +8 others
  • 2013
The ability to tolerate Candida albicans, a human commensal of the gastrointestinal tract and vagina, implicates that host defense mechanisms of resistance and tolerance cooperate to limit fungal burden and inflammation at the different body sites. We evaluated resistance and tolerance to the fungus in experimental and human vulvovaginal candidiasis (VVC)(More)
Indoleamine 2,3-dioxygenase (IDO) catalyzes the initial and rate-limiting step of tryptophan catabolism in a specific pathway, resulting in a series of extracellular messengers collectively known as kynurenines. IDO has been recognized as an authentic regulator of immunity not only in mammalian pregnancy, but also in infection, autoimmunity, inflammation,(More)
Indoleamine 2,3-dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal-transducing molecule, independently of its enzymic(More)
Although human amniotic fluid does contain different populations of foetal-derived stem cells, scanty information is available on the stemness and the potential immunomodulatory activity of in vitro expanded, amniotic fluid stem cells. By means of a methodology unrequiring immune selection, we isolated and characterized different stem cell types from(More)