Paolo Minzioni

Learn More
Aluminum Gallium Arsenide (AlGaAs) is an attractive platform for the development of integrated optical circuits for all-optical signal processing thanks to its large nonlinear coefficients in the 1.55-μm telecommunication spectral region. In this paper we discuss the results of the nonlinear continuous-wave optical characterization of AlGaAs waveguides at a(More)
Measurements of birefringence, second-harmonic phase-matching conditions, and nonlinear coefficient d(31) are performed for a set of Hafnium-doped congruent lithium niobate (Hf:cLN) crystals as functions of dopant concentration. The data highlight that the threshold concentration, above which there is a change in the Hf incorporation mechanism, is slightly(More)
Several studies have shown that low-level laser irradiation (LLLI) has beneficial effects on bone regeneration. The objective of this study was to examine the in vitro effects of LLLI on proliferation and differentiation of a human osteoblast-like cell line (Saos-2 cell line). Cultured cells were exposed to different doses of LLLI with a semiconductor diode(More)
We report on the fabrication by a femtosecond laser of an optofluidic device for optical trapping and stretching of single cells. Versatility and three-dimensional capabilities of this fabrication technology provide straightforward and extremely accurate alignment between the optical and fluidic components. Optical trapping and stretching of single red(More)
The main trend in optofluidics is currently towards full integration of the devices, thus improving automation, compactness and portability. In this respect femtosecond laser microfabrication is a very powerful technology given its capability of producing both optical waveguides and microfluidic channels. The current challenge in biology is the possibility(More)
We report on the experimental demonstration of a novel silicon based fully integrated nonlinear Mach Zehnder device. A standard silicon waveguide is used as a nonlinear arm, conversely a large mode SU-8 waveguide acts as a purely linear arm. Given this asymmetry, an intensity dependent phase shift can be introduced between the two interferometric arms.(More)
The authors present the design and optimization of an optofluidic monolithic chip, able to provide optical trapping and controlled stretching of single cells. The chip is fabricated in a fused silica glass substrate by femtosecond laser micromachining which can produce both optical waveguides and microfluidic channels with great accuracy. A new fabrication(More)
We present a novel optofluidic device for real-time sorting on the basis of cell mechanical properties, measured by optical stretching. The whole mechanism, based on optical forces, does not hamper the viability of the tested cells, which can be used for further analysis. The device effectiveness is demonstrated by extracting a sample population enriched(More)
We show a new graphical method to identify and create configurations yielding to nonlinearity compensation in a fiber transmission system. Method validity is shown with regards to different link configurations and different compensation techniques. It is demonstrated that a unifying principle can always be applied, because only one physical effect is(More)