Learn More
End-stage organ failure is a key challenge for the medical community because of the ageing population and the severe shortage of suitable donor organs available. Equally, injuries to or congenital absence of complex tissues such as the trachea, oesophagus, or skeletal muscle have few therapeutic options. A new approach to treatment involves the use of(More)
This report is to complement the original Fleischner Society recommendations for incidentally detected solid nodules by proposing a set of recommendations specifically aimed at subsolid nodules. The development of a standardized approach to the interpretation and management of subsolid nodules remains critically important given that peripheral(More)
BACKGROUND The loss of a normal airway is devastating. Attempts to replace large airways have met with serious problems. Prerequisites for a tissue-engineered replacement are a suitable matrix, cells, ideal mechanical properties, and the absence of antigenicity. We aimed to bioengineer tubular tracheal matrices, using a tissue-engineering protocol, and to(More)
BACKGROUND Tracheal tumours can be surgically resected but most are an inoperable size at the time of diagnosis; therefore, new therapeutic options are needed. We report the clinical transplantation of the tracheobronchial airway with a stem-cell-seeded bioartificial nanocomposite. METHODS A 36-year-old male patient, previously treated with debulking(More)
Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were(More)
BACKGROUND In 2008, the first transplantation of a tissue-engineered trachea in a human being was done to replace an end-staged left main bronchus with malacia in a 30-year-old woman. We report 5 year follow-up results. METHODS The patient was followed up approximately every 3 months with multidetector CT scan and bronchoscopic assessment. We obtained(More)
In June 2008, the world's first whole tissue-engineered organ - the windpipe - was successfully transplanted into a 31-year-old lady, and about 18 months following surgery she is leading a near normal life without immunosuppression. This outcome has been achieved by employing three groundbreaking technologies of regenerative medicine: (i) a donor trachea(More)
A tissue-engineered oesophageal scaffold could be very useful for the treatment of pediatric and adult patients with benign or malignant diseases such as carcinomas, trauma or congenital malformations. Here we decellularize rat oesophagi inside a perfusion bioreactor to create biocompatible biological rat scaffolds that mimic native architecture, resist(More)
Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6(More)
Using EPR spectroscopy it was established that the determination of the concentration of paramagnetic centers in lyophilized tissues allows indirect evaluation of the quality of decellularization of intrathoracic organs (diaphragm, heart, and lungs), since the content of paramagnetic particles in them can serve as a criterion of cell viability and points to(More)