Paolo G. V. Martini

Learn More
The action of nuclear hormone receptors is tripartite, involving the receptor, its ligands, and its coregulator proteins. The estrogen receptor (ER), a member of this superfamily, is a hormone-activated transcription factor that mediates the stimulatory effects of estrogens and the inhibitory effects of antiestrogens such as tamoxifen in breast cancer and(More)
Gene set analysis using biological pathways has become a widely used statistical approach for gene expression analysis. A biological pathway can be represented through a graph where genes and their interactions are, respectively, nodes and edges of the graph. From a biological point of view only some portions of a pathway are expected to be altered;(More)
Estrogen plays an important role in the regulation of vascular tone and in the pathophysiology of cardiovascular disease. Physiological effects of estrogen are mediated through estrogen receptors alpha (ERalpha) and beta (ERbeta), which are both expressed in vascular smooth muscle and endothelial cells. However, the molecular pathways mediating estrogen(More)
Estrogens exert profound effects on the physiology of diverse target cells and these effects appear to be mediated by two estrogen receptor (ER) subtypes, ERalpha and ERbeta. We have investigated how ER ligands, ranging from pure agonists to antagonists, interact with ERalpha and ERbeta, and regulate their transcriptional activity on different genes.(More)
We have identified a novel DEAD box RNA helicase (97 kDa, DP97) from a breast cancer cDNA library that interacts in a hormone-dependent manner with nuclear receptors and represses their transcriptional activity. DP97 has RNA-dependent ATPase activity, and mapping studies localize the interacting regions of DP97 and nuclear receptors to the C-terminal region(More)
We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that(More)
BACKGROUND Prostate trophism depends on DHT formed from T by the enzyme 5alpha-R. Two 5alpha-R isoforms with different biochemical characteristics have been cloned. Also estrogens might contribute to the prostate growth; however, their intraglandular formation by the enzyme aromatase is still debated. The aim of the present study was to verify whether (a)(More)
The transcriptional activity of nuclear hormone receptors is known to be modulated by coregulator proteins. We found that the repressor of estrogen receptor activity (REA), a protein recruited to the hormone-occupied estrogen receptor (ER), decreased the transcriptional activity of ER, both when ER was acting directly through DNA response elements as well(More)
Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further(More)
Currently, the method most used for gene detection calls on Affymetrix oligonucleotide arrays is provided as part of the MAS5.0 software. The MAS method uses Wilcoxon statistics for determining presence-absence (MASP/A) calls. It is known that MAS-P/A is limited by its need to use both perfect match (PM) and mismatch (MM) probe data in order to call a gene(More)