Learn More
The human hand is a complex system, with a large number of degrees of freedom (DoFs), sensors embedded in its structure, actuators and tendons, and a complex hierarchical control. Despite this complexity, the efforts required to the user to carry out the different movements is quite small (albeit after an appropriate and lengthy training). On the contray,(More)
This paper presents two robot devices for use in the rehabilitation of upper limb movements and reports the quantitative parameters obtained to characterize the rate of improvement, thus allowing a precise monitoring of patient's recovery. A one degree of freedom (DoF) wrist manipulator and a two-DoF elbow-shoulder manipulator were designed using an(More)
Considerable scientific and technological efforts have been devoted to develop neuroprostheses and hybrid bionic systems that link the human nervous system with electronic or robotic prostheses, with the main aim of restoring motor and sensory functions in disabled patients. A number of neuroprostheses use interfaces with peripheral nerves or muscles for(More)
Current prosthetic hands are basically simple grippers with one or two degrees of freedom, which barely restore the capability of the thumbindex pinch. Although most amputees consider this performance as acceptable 6r usual tasks, there is ample room for improvement by exploiting recent progresses in mechatronic design and technology. This paper focus on an(More)
OBJECTIVE The present study aimed to qualify and quantify the different components of motor recovery in a group of stroke patients treated by robot-aided techniques. In addition, the learning model of each motor recovery component was analyzed. METHODS Two groups of poststroke patients were treated with the use of an elbow-shoulder manipulator,(More)
Quantitative assessment of digit range of motion (ROM) is often needed for monitoring effectiveness of rehabilitative treatments and assessing patients' functional impairment. The objective of this research was to investigate the feasibility of using the Humanware Humanglove, a 20-position sensors glove, to measure fingers' ROM, with particular regard to(More)
Motivation is an important factor in rehabilitation and frequently used as a determinant of rehabilitation outcome. Several factors can influence patient motivation and so improve exercise adherence. This paper presents the design of two robot devices for use in the rehabilitation of upper limb movements, that can motivate patients during the execution of(More)
In the recent past, the introduction of miniaturised image sensors with low power consumption, based on complementary metal oxide semiconductor (CMOS) technology, has allowed the realisation of an ingestible wireless capsule for the visualisation of the small intestine mucosa. The device has received approval from Food and Drug Administration and has gained(More)
Hand movement data acquisition is used in many engineering applications ranging from the analysis of gestures to the biomedical sciences. Glove-based systems represent one of the most important efforts aimed at acquiring hand movement data. While they have been around for over three decades, they keep attracting the interest of researchers from increasingly(More)
Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the(More)