Paolo Carloni

Learn More
The emergence of drug-resistant variants is a serious side effect associated with acquired immune deficiency syndrome therapies based on inhibition of human immunodeficiency virus type 1 protease (HIV-1 PR). In these variants, compensatory mutations, usually located far from the active site, are able to affect the enzymatic activity via molecular mechanisms(More)
Current all-atom potential based molecular dynamics (MD) allows the identification of a protein's functional motions on a wide-range of timescales, up to few tens of nanoseconds. However, functional, large-scale motions of proteins may occur on a timescale currently not accessible by all-atom potential based MD. To avoid the massive computational effort(More)
The biological function of the aspartic protease from HIV-1 has recently been related to the conformational flexibility of its structural scaffold. Here, we use a multistep strategy to investigate whether the same mechanism affects the functionality in the pepsin-like fold. (i) We identify the set of conserved residues by using sequence-alignment(More)
HCN channels are activated by membrane hyperpolarization and regulated by cyclic nucleotides, such as cyclic adenosine-mono-phosphate (cAMP). Here we present structural models of the pore region of these channels obtained by using homology modeling and validated against spatial constraints derived from electrophysiological experiments. For the construction(More)
In the brain, high cognitive functions are encoded by coherent network oscillations. Key players are inhibitory interneurons that, by releasing GABA into principal cells, pace targeted cells. Among these, oriens-lacunosum moleculare (O-LM) interneurons that provide a theta frequency patterned output to distal dendrites of pyramidal cells are endowed with(More)
Molecular dynamics simulations of the K+ channel from Streptomyces lividans (KcsA channel) were performed in a membrane-mimetic environment with Na+ and K+ in different initial locations. The structure of the channel remained stable and well preserved for simulations lasting up to 1.5 ns. Salt bridges between Asp80 and Arg89 of neighboring subunits, not(More)
Human (Hu) familial prion diseases are associated with about 40 point mutations of the gene coding for the prion protein (PrP). Most of the variants associated with these mutations are located in the globular domain of the protein. We performed 50 ns of molecular dynamics for each of these mutants to investigate their structure in aqueous solution. Overall,(More)
Odorant receptors belong to class A of the G protein-coupled receptors (GPCRs) and detect a large number of structurally diverse odorant molecules. A recent structural bioinformatic analysis suggests that structural features are conserved across class A of GPCRs in spite of their low sequence identity. Based on this work, we have aligned the sequences of 29(More)
The homodimeric catabolite activator protein (CAP) is a bacterial DNA binding transcription regulator whose activity is controlled by the binding of the intracellular mediator cyclic adenosine monophosphate (cAMP). Each CAP subunit consists of a cyclic nucleotide and a DNA binding domain. Here, we investigate the structural features of the ligand-bound CAP(More)
The emergence of compensatory drug-resistant mutations in HIV-1 protease challenges the common view of the reaction mechanism of this enzyme. Here, we address this issue by performing classical and ab initio molecular dynamics simulations (MD) on a complex between the enzyme and a peptide substrate. The classical MD calculation reveals large-scale protein(More)