Learn More
The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor(More)
The aim of this work is to present an original double-threshold detector of muscle activation, specifically developed for gait analysis. This detector operates on the raw myoelectric signal and, hence, it does not require any envelope detection. Its performances are fixed by the values of three parameters, namely, false-alarm probability (Pfa), detection(More)
This paper describes <i>Mercury</i>, a wearable, wireless sensor platform for motion analysis of patients being treated for neuromotor disorders, such as Parkinson's Disease, epilepsy, and stroke. In contrast to previous systems intended for short-term use in a laboratory, Mercury is designed to support long-term, longitudinal data collection on patients in(More)
OBJECTIVE Somatosensory function declines with diabetic neuropathy and often with stroke, resulting in diminished motor performance. Recently, it has been shown that input noise can enhance human sensorimotor function. The goal of this study was to investigate whether subsensory mechanical noise applied to the soles of the feet via vibrating insoles can be(More)
The time-dependent shift in the spectral content of the surface myoelectric signal to lower frequencies has proven to be a useful tool for assessing localized muscle fatigue. Unfortunately, the technique has been restricted to constant-force, isometric contractions because of limitations in the processing methods used to obtain spectral estimates. A novel(More)
The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of(More)
The objective of this study was the development of a remote monitoring system to monitor and detect simple motor seizures. Using accelerometer-based kinematic sensors, data were gathered from subjects undergoing medication titration at the Beth Israel Deaconess Medical Center. Over the course of the study, subjects repeatedly performed a predefined set of(More)
ecent advances in miniature devices, as well as mobile and ubiquitous computing, have fostered a dramatic growth of interest for wearable technology. Wearable sensors and systems have evolved to the point that they can be considered ready for clinical application. This is due not only to the tremendous increase in research efforts devoted to this area in(More)
Subclinical evidence of gait abnormalities were identified in a group of seven patients with multiple sclerosis, EDSS scored 0 - 2, without functional limitations. A movement analysis technique was used to identify gait parameters indicative of impaired motor function during walking. Abnormalities related primarily to time-distance parameters (reduced speed(More)
A new approach to estimating the frequency compression of the surface EMG signal during cyclical dynamic exercise is described. The basic properties of the method are first developed using simulated EMG signals. Spectral compression is measured by defining the instantaneous median frequency from time-frequency representations of the signal derived from a(More)