Paolo Bigini

Learn More
In recent work we reported that systemically administered erythropoietin (EPO) crosses the blood-brain barrier and has protective effects in animal models of cerebral ischemia, brain trauma and in a rat model of experimental autoimmune encephalomyelitis (EAE). Here we characterize the effect of systemic EPO on the inflammatory component of actively induced,(More)
Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also directly modulates EPO receptor (EPO-R)-expressing glia,(More)
The lack of effective drug therapies for motor neuron diseases (MND), and in general for all the neurodegenerative disorders, has increased the interest toward the potential use of stem cells. Among the cell therapy approaches so far tested in MND animal models, systemic injection of human cord blood mononuclear cells (HuCB-MNCs) has proven to reproducibly(More)
The wobbler mouse is one of the most useful models of motoneuron degeneration, characterized by selective motoneuronal death in the cervical spinal cord. We carried out two parallel studies in wobbler mice, comparing the anti-glutamatergic drug riluzole and the AMPA receptor antagonist RPR119990. Mice were treated with 40 mg/kg/day of riluzole or with 3(More)
Leukocyte infiltration is viewed as a pharmacological target in cerebral ischemia. We previously reported that reparixin, a CXCL8 receptor blocker that inhibits neutrophil infiltration, and related molecules can reduce infarct size in a rat model of transient middle cerebral artery occlusion (MCAO). The study aims were to compare the effects of reparixin in(More)
Erythropoietin (EPO) mediates a wide range of neuroprotective activities, including amelioration of disease and neuroinflammation in rat models of EAE. However, optimum dosing parameters are currently unknown. In the present study, we used a chronic EAE model induced in mice by immunization with the myelin oligodendrocyte glycoprotein peptide (MOG35-55) to(More)
We studied the role of glutamate excitotoxicity in motor neuron degeneration in the wobbler mouse (wr/wr), a model of amyotrophic lateral sclerosis and spinal muscular atrophies. Choline acetyltransferase (ChAT) activity was decreased in the cervical spinal cord and in the muscles innervated by nerves originating in this region of wobbler mice, but no(More)
The mnd mouse spontaneously develops slowly evolving motoneuron pathology leading to progressive motor impairment. There is strong evidence that a complex interplay between oxidative stress, mitochondria abnormalities and alteration of glutamate neurotransmission plays an important role in the pathogenesis of motor neuron diseases. Therefore, we(More)
We evaluated the role of acetyl-L-carnitine (ALCAR) in protecting primary motoneuron cultures exposed to excitotoxic agents or serum-brain derived neurotrophic factor (BDNF) deprived. To exclude that ALCAR works as a metabolic source, we compared its effects with those of L-carnitine (L-CAR), that seems to have no neurotrophic effect. A concentration of 10(More)
Amyotrophic lateral sclerosis (ALS) is a severe clinical condition characterized by upper and lower motor neuron degeneration for which there is no truly effective treatment. The absence of an effective treatment can be explained in part by the complex and heterogeneous genetic, biochemical, and clinical features of ALS. While ALS accounts for the majority(More)