#### Filter Results:

#### Publication Year

2000

2012

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We investigate the internal logic of a quantum computer with two qubits, in the two particular cases of non-entanglement (separable states) and maximal entanglement (Bell's states). To this aim, we consider an internal (reversible) measurement which preserves the probabilities by mirroring the states. We then obtain logical judgements for both cases of… (More)

We give the logical description of a new kind of quantum measurement that is a reversible operation performed by a hypothetical insider observer, or, which is the same, a quantum measurement made in a quantum space background, like the fuzzy sphere. The result is that the non-contradiction and the excluded middle principles are both invalidated, leading to… (More)

We interpret the Holographic Conjecture in terms of quantum bits (qubits). N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-2 1 representation of) 2 (SU , which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons ,… (More)

- Paola Zizzi
- ArXiv
- 2007

We show that self-referentiality can be formalized in Basic logic by means of a new connective: @, called "entanglement". In fact, the property of non-idempotence of the connective @ is a metatheorem, which states that a self-referential sentence loses its own identity. This prevents having self-referential paradoxes in the corresponding metalanguage. 1.… (More)

- Paola Zizzi
- ArXiv
- 2005

We show that any unitary transformation performed on the quantum state of a closed quantum system describes an inner, reversible, generalized quantum measurement. We also show that under some specific conditions it is possible to perform a unitary transformation on the state of the closed quantum system by means of a collection of generalized measurement… (More)

- Paola Zizzi
- ArXiv
- 2012

The existence of a non-algorithmic side of the mind, conjectured by Penrose on the basis of Gödel's first incompleteness theorem, is investigated here in terms of a quantum metalanguage. We suggest that, besides human ordinary thought, which can be formalized in a computable, logical language, there is another important kind of human thought, which is… (More)

- ‹
- 1
- ›