Paola Zizzi

Learn More
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But...can it be made explicit? In other words, is it possible to(More)
We consider the quantum computational process as viewed by an insider observer: this is equivalent to an isomorphism between the quantum computer and and a quantum space, namely the fuzzy sphere. The result is the formulation of a reversible quantum measurement scheme, with no hidden information.
We give the logical description of a new kind of quantum measurement that is a reversible operation performed by a hypothetical insider observer, or, which is the same, a quantum measurement made in a quantum space background, like the fuzzy sphere. The result is that the non-contradiction and the excluded middle principles are both invalidated, leading to(More)
We consider the issue of computability at the most fundamental level of physical reality: the Planck scale. To this aim, we consider the theoretical model of a quantum computer on a non commutative space background, which is a computational model for quantum gravity. In this domain, all computable functions are the laws of physics in their most primordial(More)