Learn More
A vibrational analysis using FTIR and Raman spectroscopies was carried out on aqueous glucose solutions with a wide range of solute molar fractions and temperatures. The analysis was aimed at revealing structural changes in the local hydrogen-bonding (HB) network of liquid water, correlating these with the conservative properties of biomolecules, and(More)
The relaxation properties of hydration water around fructose, glucose, sucrose, and trehalose molecules have been studied by means of extended frequency range depolarized light scattering and molecular dynamics simulations. Evidence is given of hydration dynamics retarded by a factor ξ = 5-6 for all the analyzed solutes. A dynamical hydration shell is(More)
This work concerns a comparison of the hydration properties and self-association behavior in aqueous solution of three biologically relevant simple molecules: tert-butyl alcohol (TBA), trimethylamine-n-oxide (TMAO), and glycine betaine (GB). These molecules were used as a model to study hydrophobic behavior in water solutions. In particular, water(More)
Biological interfaces characterized by a complex mixture of hydrophobic, hydrophilic, or charged moieties interfere with the cooperative rearrangement of the hydrogen-bond network of water. In the present study, this solute-induced dynamical perturbation is investigated by extended frequency range depolarized light scattering experiments on an aqueous(More)
A broadband depolarized light scattering (DLS) study is performed on diluted lysozyme aqueous solutions as a function of temperature and concentration. The dynamical susceptibility, obtained in a wide spectral range (0.6-36000 GHz) through the coupled use of interferometric and dispersive devices, is interpreted and compared with neutron scattering and(More)
The unfolding of hen egg-white lysozyme dissolved both in D(2)O and CH(3)CH(2)OD/D(2)O was studied by Fourier Transform Infrared (FTIR) absorption spectroscopy at different protein concentrations. A detailed description of the local and global rearrangement of the secondary structure upon a temperature increase, in the range 295 to 365K, was obtained(More)
Vibrational spectroscopy has been applied to the study of conformational variation of lysozyme during thermal denaturation. An infrared and vibrational circular dichroism (VCD) analysis of lysozyme in D2O, D2O/EtOD, and D2O/DMSO at different solvent compositions and pH's was accomplished. Complete deuteration effects on amidic groups were revealed through(More)
The thermal denaturation of hen egg white lysozyme (HEWL) in D(2)O was followed by IR absorption after addition of dimethyl sulfoxide (DMSO) at different molar fractions. Amide I intensity and position revealed that DMSO reduces the thermal stability of the native protein and favors the formation of ordered aggregates. The comparison with ethanol/water(More)
Cellular imaging techniques have become powerful tools in cell biology. With respect to others, the techniques based on vibrational spectroscopy present a clear advantage: the molecular composition and the modification of subcellular compartments can be obtained in label-free conditions. In fact, from the evolution of positions, intensities and line widths(More)