Learn More
Molecular cytogenetic methods were applied to investigate the effect of the occupational exposure to low concentrations of benzene and petroleum fuels on genomic stability. Twelve male gasoline station attendants (average benzene exposure of 0.32 mg/m3 as 8h TWA) and 12 age- and smoking-matched unexposed controls were selected for the study. The incidence(More)
Gene-environment interactions play an important role in folate metabolism, with a potential impact on human health. Deficiencies in the uptake of key micronutrients and variant genotypes can affect the folic acid cycle, modulating methyl group transfer in key processes and leading to increased cancer risk and Down syndrome incidence. So far, the(More)
Folic acid plays a key role in the maintenance of genomic stability, providing methyl groups for the conversion of uracil to thymine and for DNA methylation. Besides dietary habits, folic acid metabolism is influenced by genetic polymorphism. The C677T polymorphism of the methylene-tetrahydrofolate reductase (MTHFR) gene is associated with a reduction of(More)
The incidence of spontaneous aneuploidy in human somatic and germ cells is known to be positively associated with aging. However, the influence of age on the individual susceptibility to chemically induced chromosome malsegregation has not been elucidated. In this study the spindle poison vinblastine (VBL) was used as a model compound to assess the(More)
The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized(More)
  • 1