Learn More
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of(More)
We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype model for liquids that present the same thermodynamic anomalies which characterize liquid water. Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an accurate density of states for different system sizes and(More)
Molecular dynamics simulations are performed on two sodium chloride solutions in TIP4P water with concentrations c=1.36 mol/kg and c=2.10 mol/kg upon supercooling. The isotherms and isochores planes are calculated. The temperature of maximum density line and the limit of mechanical stability line are obtained from the analysis of the thermodynamic planes.(More)
We present a quantitative comparison at equivalent thermodynamical conditions of bulk and confined dynamical properties of a Lennard-Jones binary mixture upon supercooling. Both systems had been previously found to display a behavior in agreement with the mode coupling theory of the evolution of glassy dynamics. Differences and analogies of behavior are(More)
Using discrete molecular dynamics simulations we study the relation between the thermodynamic and diffusive behaviors of a primitive model of aqueous solutions of hydrophobic solutes consisting of hard spheres in the Jagla particles solvent, close to the liquid-liquid critical point of the solvent. We find that the fragile-to-strong dynamic transition in(More)
The two-body excess entropy of supercooled water is calculated from the radial distribution functions obtained from computer simulation of the TIP4P model for different densities upon supercooling. This quantity is considered in connection with the relaxation time of the self intermediate scattering function. The relaxation time shows a mode coupling theory(More)
We perform molecular dynamics computer simulations in order to study the equation of state and the structure of supercooled aqueous solutions of methanol at methanol mole fractions x(m) = 0.05 and x(m) = 0.10. We model the solvent using the TIP4P/2005 potential and the methanol using the OPLS-AA force field. We find that for x(m) = 0.05 the behavior of the(More)
(received ; accepted) PACS. 61.20Ja – Computer simulation of liquid structure. Abstract. – We present the results of molecular dynamics simulations of SPC/E water confined in a realistic model of a silica pore. The single-particle dynamics have been studied at ambient temperature for different hydration levels. The confinement near the hydrophilic surface(More)
We perform an accurate analysis of the density self-correlation functions of TIP4P/2005 supercooled water on approaching the region of the liquid-liquid critical point. In a previous work on this model, we provided evidence of a fragile to strong crossover of the dynamical behavior in the deep supercooled region. The structural relaxation follows the Mode(More)
Water is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of(More)