Paola Flocchini

Learn More
The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems – delay-tolerant networks, opportunistic-mobility networks, social networks – obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the(More)
Consider a team of mobile software agents deployed to capture a (possibly hostile) intruder in a network. All agents, including the intruder move along the network links; the intruder could be arbitrarily fast, and aware of the positions of all the agents. The problem is to design the agents' strategy for capturing the intruder. The main efficiency(More)
In this paper we study the problem of gathering in the same location of the plane a collection of identical oblivious mobile robots. Previous investigations have focused mostly on the unlimited visibility setting, where each robot can always see all the other ones, regardless of their distance. In the more difficult and realistic setting where the robots(More)
In this paper we present deterministic parallel algorithms for the coarse-grained multicomputer (CGM) and bulk synchronous parallel (BSP) models for solving the following well-known graph problems: (1) list ranking, (2) Euler tour construction in a tree, (3) computing the connected components and spanning forest, (4) lowest common ancestor preprocessing,(More)
In this paper we address the problem of mobile agents searching for a highly harmful item (called a black hole) in a ring network. The black hole is a stationary process that destroys visiting agents upon their arrival without leaving any observable trace of such a destruction. The task is to have at least one surviving agent able to unambiguously report(More)
We consider the problem of exploring an anonymous unoriented ring by a team of k identical, oblivious, asynchronous mobile robots that can view the environment but cannot communicate. This weak scenario is standard when the spatial universe in which the robots operate is the two-dimensional plane, but (with one exception) has not been investigated before(More)
The study of what can be computed by a team of autonomous mobile robots, originally started in robotics and AI, has become increasingly popular in theoretical computer science (especially in distributed computing), where it is now an integral part of the investigations on computability by mobile entities. The robots are identical computational entities(More)
The distributed coordination and control of a set of autonomous mobile robots is a problem widely studied in a variety of fields, such as engineering, artificial intelligence, artificial life, robotics. Generally, in these areas the problem is studied mostly from an empirical point of view. In contrast, we aim to understand the fundamental limitations on(More)
Consider a set of n > 2 simple autonomous mobile robots (decentralized, asynchronous, no common coordinate system, no identities, no central coordination, no direct communication, no memory of the past, deterministic) moving freely in the plane and able to sense the positions of the other robots. We study the primitive task of gathering them at a point not(More)
From an engineering point of view, the problem of coordinating a set of autonomous, mobile robots for the purpose of cooperatively performing a task has been studied extensively over the past decade. In contrast, in this paper we aim at an understanding of the fundamental algorithmic limitations on what a set of autonomous mobile robots can or cannot(More)