Learn More
BACKGROUND The utility of simulation environments in the development of an artificial pancreas for type 1 diabetes mellitus (T1DM) management is well established. The availability of a simulator that incorporates glucagon as a counterregulatory hormone to insulin would allow more efficient design of bihormonal glucose controllers. Existing models of the(More)
BACKGROUND This study assesses proof of concept and safety of a novel bio-inspired artificial pancreas (BiAP) system in adults with type 1 diabetes during fasting, overnight, and postprandial conditions. In contrast to existing glucose controllers in artificial pancreas systems, the BiAP uses a control algorithm based on a mathematical model of β-cell(More)
OBJECTIVE To understand patient engagement with decision-making for infection management in secondary care and the consequences associated with current practices. DESIGN A qualitative investigation using in-depth focus groups. PARTICIPANTS Fourteen members of the public who had received antimicrobials from secondary care in the preceding 12 months in(More)
BACKGROUND The popularity of continuous subcutaneous insulin infusion (CSII), or insulin pump therapy, as a way to deliver insulin more physiologically and achieve better glycemic control in diabetes patients has increased. Despite the substantiated therapeutic advantages of using CSII, its use has also been associated with an increased risk of technical(More)
This paper presents an advanced insulin bolus advisor for people with diabetes on multiple daily injections or insulin pump therapy. The proposed system, which runs on a smartphone, keeps the simplicity of a standard bolus calculator while enhancing its performance by providing more adaptability and flexibility. This is achieved by means of applying a(More)
INTRODUCTION Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the(More)
BACKGROUND AND OBJECTIVE Insulin bolus calculators are simple decision support software tools incorporated in most commercially available insulin pumps and some capillary blood glucose meters. Although their clinical benefit has been demonstrated, their utilisation has not been widespread and their performance remains suboptimal, mainly because of their(More)
We developed an integrated chip for real-time amplification and detection of nucleic acid using pH-sensing complementary metal-oxide semiconductor (CMOS) technology. Here we show an amplification-coupled detection method for directly measuring released hydrogen ions during nucleotide incorporation rather than relying on indirect measurements such as(More)
This paper presents a robust, low-power and compact ion-sensitive field-effect transistor (ISFET) sensing front-end for pH reaction monitoring using unmodified CMOS. Robustness is achieved by overcoming problems of DC offset due to trapped charge and transcoductance reduction due to capacitive division, which commonly exist with implementation of ISFETs in(More)
BACKGROUND Estimating the rate of glucose appearance (R(a)) after ingestion of a mixed meal may be highly valuable in diabetes management. The gold standard technique for estimating R(a) is the use of a multitracer oral glucose protocol. However, this technique is complex and is usually not convenient for large studies. Alternatively, a simpler approach(More)