Learn More
The beta-barrel outer membrane proteins constitute one of the two known structural classes of membrane proteins. Whereas there are several different web-based predictors for alpha-helical membrane proteins, currently there is no freely available prediction method for beta-barrel membrane proteins, at least with an acceptable level of accuracy. We present(More)
The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function. We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of(More)
Computational prediction of signal peptides (SPs) and their cleavage sites is of great importance in computational biology; however, currently there is no available method capable of predicting reliably the SPs of archaea, due to the limited amount of experimentally verified proteins with SPs. We performed an extensive literature search in order to identify(More)
BACKGROUND Prediction of the transmembrane strands and topology of beta-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on(More)
BACKGROUND Integral membrane proteins constitute about 20-30% of all proteins in the fully sequenced genomes. They come in two structural classes, the alpha-helical and the beta-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the alpha-helical integral(More)
The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction(More)
MOTIVATION Computational prediction of signal peptides is of great importance in computational biology. In addition to the general secretory pathway (Sec), Bacteria, Archaea and chloroplasts possess another major pathway that utilizes the Twin-Arginine translocase (Tat), which recognizes longer and less hydrophobic signal peptides carrying a distinctive(More)
The vast cell-surface receptor family of G-protein coupled receptors (GPCRs) is the focus of both academic and pharmaceutical research due to their key role in cell physiology along with their amenability to drug intervention. As the data flow rate from the various genome and proteome projects continues to grow, so does the need for fast, automated and(More)
MOTIVATION G-protein coupled receptors are a major class of eukaryotic cell-surface receptors. A very important aspect of their function is the specific interaction (coupling) with members of four G-protein families. A single GPCR may interact with members of more than one G-protein families (promiscuous coupling). To date all published methods that predict(More)
BACKGROUND G- Protein coupled receptors (GPCRs) comprise the largest group of eukaryotic cell surface receptors with great pharmacological interest. A broad range of native ligands interact and activate GPCRs, leading to signal transduction within cells. Most of these responses are mediated through the interaction of GPCRs with heterotrimeric GTP-binding(More)