Learn More
The beta-barrel outer membrane proteins constitute one of the two known structural classes of membrane proteins. Whereas there are several different web-based predictors for alpha-helical membrane proteins, currently there is no freely available prediction method for beta-barrel membrane proteins, at least with an acceptable level of accuracy. We present(More)
The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function. We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of(More)
Plasminogen activator inhibitor (PAI-1), is the central component of the fibrinolytic system. A deletion/insertion (4G/5G) polymorphism in the promoter region of the PAI-1 gene has been correlated with levels of plasma PAI-1. The 4G allele is associated with higher levels of PAI-1, and might increase the risk for intravascular thrombosis. However, the(More)
Computational prediction of signal peptides (SPs) and their cleavage sites is of great importance in computational biology; however, currently there is no available method capable of predicting reliably the SPs of archaea, due to the limited amount of experimentally verified proteins with SPs. We performed an extensive literature search in order to identify(More)
AIM We conducted a systematic review and a meta-analysis, in order to investigate the potential association of cytokine gene polymorphisms with either aggressive or chronic periodontal disease. MATERIAL AND METHODS A comprehensive literature search was performed. We retrieved a total of 53 studies summarizing information about 4178 cases and 4590(More)
Integral membrane proteins constitute about 20–30% of all proteins in the fully sequenced genomes. They come in two structural classes, the α-helical and the β-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the α-helical integral membrane proteins(More)
G protein-coupled receptors (GPCRs) transduce signals from extracellular space into the cell, through their interaction with G proteins, which act as switches forming hetero-trimers composed of different subunits (α,β,γ). The α subunit of the G protein is responsible for the recognition of a given GPCR. Whereas specialised resources for GPCRs, and other(More)
The vast cell-surface receptor family of G-protein coupled receptors (GPCRs) is the focus of both academic and pharmaceutical research due to their key role in cell physiology along with their amenability to drug intervention. As the data flow rate from the various genome and proteome projects continues to grow, so does the need for fast, automated and(More)
Prediction of the transmembrane strands and topology of β-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on Hidden Markov(More)
MOTIVATION Computational prediction of signal peptides is of great importance in computational biology. In addition to the general secretory pathway (Sec), Bacteria, Archaea and chloroplasts possess another major pathway that utilizes the Twin-Arginine translocase (Tat), which recognizes longer and less hydrophobic signal peptides carrying a distinctive(More)