Learn More
The beta-barrel outer membrane proteins constitute one of the two known structural classes of membrane proteins. Whereas there are several different web-based predictors for alpha-helical membrane proteins, currently there is no freely available prediction method for beta-barrel membrane proteins, at least with an acceptable level of accuracy. We present(More)
The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function. We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of(More)
BACKGROUND Integral membrane proteins constitute about 20-30% of all proteins in the fully sequenced genomes. They come in two structural classes, the alpha-helical and the beta-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the alpha-helical integral(More)
BACKGROUND Prediction of the transmembrane strands and topology of beta-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on(More)
MOTIVATION Computational prediction of signal peptides is of great importance in computational biology. In addition to the general secretory pathway (Sec), Bacteria, Archaea and chloroplasts possess another major pathway that utilizes the Twin-Arginine translocase (Tat), which recognizes longer and less hydrophobic signal peptides carrying a distinctive(More)
MOTIVATION G-protein coupled receptors are a major class of eukaryotic cell-surface receptors. A very important aspect of their function is the specific interaction (coupling) with members of four G-protein families. A single GPCR may interact with members of more than one G-protein families (promiscuous coupling). To date all published methods that predict(More)
BACKGROUND G- Protein coupled receptors (GPCRs) comprise the largest group of eukaryotic cell surface receptors with great pharmacological interest. A broad range of native ligands interact and activate GPCRs, leading to signal transduction within cells. Most of these responses are mediated through the interaction of GPCRs with heterotrimeric GTP-binding(More)
BACKGROUND G protein-coupled receptors (GPCRs) transduce signals from extracellular space into the cell, through their interaction with G proteins, which act as switches forming hetero-trimers composed of different subunits (alpha,beta,gamma). The alpha subunit of the G protein is responsible for the recognition of a given GPCR. Whereas specialised(More)
We describe here OMPdb, which is currently the most complete and comprehensive collection of integral β-barrel outer membrane proteins from Gram-negative bacteria. The database currently contains 69,354 proteins, which are classified into 85 families, based mainly on structural and functional criteria. Although OMPdb follows the annotation scheme of Pfam,(More)
Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • We present a Hidden Markov Model method for the prediction of lipoprotein signal peptides of Gram-positive bacteria, trained on a set of(More)