Panatda Saenkham

Learn More
Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which(More)
Agrobacterium tumefaciens is capable of transferring and integrating an oncogenic T-DNA (transferred DNA) from its tumor-inducing (Ti) plasmid into dicotyledonous plants. This transfer requires that the virulence genes (vir regulon) be induced by plant signals such as acetosyringone in an acidic environment. Salicylic acid (SA) is a key signal molecule in(More)
The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus(More)
Agrobacterium tumefaciens possesses three iron-containing superoxide dismutases (FeSods) encoded by distinct genes with differential expression patterns. SodBI and SodBII are cytoplasmic isozymes, while SodBIII is a periplasmic isozyme. sodBI is expressed at a high levels throughout all growth phases. sodBII expression is highly induced upon exposure to(More)
We have thoroughly investigated the abrB2 gene (sll0822) encoding an AbrB-like regulator in the wild-type strain of the model cyanobacterium Synechocystis strain PCC6803. We report that abrB2 is expressed from an active but atypical promoter that possesses an extended -10 element (TGTAATAT) that compensates for the absence of a -35 box. Strengthening the(More)
The copper resistance determinant copARZ, which encodes a CPx-type copper ATPase efflux protein, a transcriptional regulator, and a putative intracellular copper chaperone, was functionally characterized for the phytopathogenic bacterium Agrobacterium tumefaciens. These genes are transcribed as an operon, and their expression is induced in response to(More)
We report the development of new and robust tools for facile integration and meaningful representation of the high throughput data acquired during the study of the genome-wide responses to environmental challenges or genetic modifications of the best-studied cyanobacterium Synechocystis sp. PCC6803, which has the potential for the photoproduction of(More)
Singlet oxygen is a highly reactive form of molecular oxygen that is harmful to biological systems. Here, the role of three iron-containing superoxide dismutase (sodB) genes is clearly shown in protecting Agrobacterium tumefaciens against singlet oxygen toxicity. A sodBI mutant was more sensitive to singlet oxygen than both wild-type bacteria and a double(More)
In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the model unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature). We demonstrate that the hydrogenase-encoding hoxEFUYH operon is(More)
Sco (for the synthesis of cytochrome c oxidase) is a mitochondrial membrane protein essential for the correct assembly of cytochrome c oxidase. sco homolog genes exist in a wide variety of bacterial species. Inactivation of Agrobacterium tumefaciens sco leads to markedly decreased cytochrome c oxidase activity. This phenotype can be complemented by either(More)