Panagiotis Vartholomeos

Learn More
This paper presents the motion analysis, design and position control of a novel, low cost, sliding micro-robot, which is actuated by centripetal forces generated by robot mounted vibration micro-motors. A new, two-micromotor design of the platform is presented, that improves system energy efficiency, and further does not necessitate for synchronous actuator(More)
This paper presents the analysis and design of a novel mini-robotic platform that is able to perform translational and rotational sliding with sub-micrometer positioning accuracy and develop velocities up to 1.5 mm/s. The platform actuation system employs vibration micro motors. The dynamic model of the platform and of its actuation system is presented, and(More)
A computational platform has been developed to perform simulation, visualization, and postprocessing analysis of the aggregation process of magnetic particles within a fluid environment such as small arteries and arterioles or fluid-filled cavities of the human body. The mathematical models needed to describe the physics of the system are presented in(More)
This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. In the proposed approach, the MRI scanner is used to deliver power, estimate actuator state and perform closed-loop control. The actuators themselves are compact, inexpensive and wireless. Using needle driving as an example application, actu-ation(More)
Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative and reconstructive treatments in the human body at the cellular and sub-cellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external(More)
There are many examples of minimally invasive surgery in which tethered robots are incapable of accurately reaching target locations deep inside the body either because they are too large and result in tissue damage or because the tortuosity of the path leads to loss of tip control. In these situations, small untethered magnetically-powered robots may hold(More)
This review presents the state of the art of magnetic resonance imaging (MRI)-guided nanorobotic systems that can perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular levels in a controllable manner. The concept of an MRI-guided nanorobotic system is based on the use of an MRI scanner to induce the(More)
Magnetic resonance imaging presents high-resolution preoperative scans of target tissue and allows for the availability of intraoperative real-time images without the exposure of patients to ionizing radiation. This has motivated scientists and engineers to integrate medical robotics with the magnetic resonance imaging modality to allow robot-assisted,(More)
This paper presents the analysis, design, and simulation of a novel microrobotic platform that is able to perform translational and rotational sliding with submicrometer positioning accuracy and develop velocities up to 1.5 mm/ s. The platform actuation system is novel and based on centripetal forces generated by vibration micromotors. The motion principle(More)
Actuators that are powered, imaged and controlled by Magnetic Resonance (MR) scanners offer the potential of inexpensively providing wireless control of MR-guided robots. Similar to traditional electric motors, the MR scanner acts as the stator and generates propulsive torques on an actuator rotor containing one or more ferrous particles. To generate(More)