Panagiotis K. Siogkas

Learn More
In this work, we present a platform for the development of multiscale patient-specific artery and atherogenesis models. The platform, called ARTool, integrates technologies of 3-D image reconstruction from various image modalities, blood flow and biological models of mass transfer, plaque characterization, and plaque growth. Patient images are acquired for(More)
Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer(More)
Computational fluid dynamics methods based on in vivo 3-D vessel reconstructions have recently been identified the influence of wall shear stress on endothelial cells as well as on vascular smooth muscle cells, resulting in different events such as flow mediated vasodilatation, atherosclerosis, and vascular remodeling. Development of image-based modeling(More)
Imaging systems transmit and acquire signals and are subject to errors including: error sources, signal variations or possible calibration errors. These errors are included in all imaging systems for atherosclerosis and are propagated to methodologies implemented for the segmentation and characterization of atherosclerotic plaque. In this paper, we present(More)
A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the(More)
BACKGROUND The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders(More)
The estimation of the severity of coronary lesions is of utmost importance in today's clinical practice, since Cardiovascular diseases often have fatal consequences. The most efficient method to estimate the severity of a lesion is the calculation of the Fractional Flow Reserve. The necessary use of a pressure wire, however, makes this method invasive and(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire,(More)
In this paper, a framework for the inflation of micro-CT data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of four steps. In the first step a centerline is extracted from the micro-CT images. In the second step the micro CT images are segmented automatically using the k-means algorithm. In the third step(More)