Panagiota Iordanidou

Learn More
The lateral hypothalamus (LH) is a key regulator of multiple vital behaviors. The firing of brain-wide-projecting LH neurons releases neuropeptides promoting wakefulness (orexin/hypocretin; OH), or sleep (melanin-concentrating hormone; MCH). OH neurons, which coexpress glutamate and dynorphin, have been proposed to excite their neighbors, including MCH(More)
Subscribing organizations are encouraged to copy and distribute this table of contents for non-commercial purposes Review Carnitine biosynthesis in mammals A novel immunoglobulin superfamily receptor (19A) related to CD2 is expressed on activated lymphocytes and promotes homotypic B-cell adhesion Crystal structure of human carbonic anhydrase II complexed(More)
A novel lymphocyte-specific immunoglobulin superfamily protein (19A) has been cloned. The predicted 335-amino-acid sequence of 19A represents a Type 1 membrane protein with homology with the CD2 family of receptors. A molecular model of the two predicted extracellular immunoglobulin-like domains of 19A has been generated using the crystal structure of CD2(More)
The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell(More)
In humans and rodents, loss of brain orexin/hypocretin (OH) neurons causes pathological sleepiness [1-4], whereas OH hyperactivity is associated with stress and anxiety [5-10]. OH cell control is thus of considerable interest. OH cells are activated by fasting [11, 12] and proposed to stimulate eating [13]. However, OH cells are also activated by diverse(More)
  • 1