Learn More
Notch receptors function in highly conserved intercellular signalling pathways that direct cell-fate decisions, proliferation and apoptosis in metazoans. Fringe proteins can positively and negatively modulate the ability of Notch ligands to activate the Notch receptor. Here we establish the biochemical mechanism of Fringe action. Drosophila and mammalian(More)
Mucopolysaccharidosis type III A (MPS III A, Sanfilippo syndrome) is a rare, autosomal recessive, lysosomal storage disease characterized by accumulation of heparan sulfate secondary to defective function of the lysosomal enzyme heparan N- sulfatase (sulfamidase). Here we describe a spontaneous mouse mutant that replicates many of the features found in MPS(More)
The production of glycoproteins with carbohydrates of defined structure and minimal heterogeneity is important for functional studies of mammalian carbohydrates. To facilitate such studies, several Chinese hamster ovary mutants that carry between two and four glycosylation mutations were developed. All of the lines grew readily in culture despite the(More)
Lec1 CHO cell mutants lack N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and do not synthesize complex or hybrid N-glycans. The origins of six independent lec1 mutations are shown to reside in the coding region of the Mgat1 gene, proving that GlcNAc-TI is mutated in Lec1 mutants. One mutant has Mgat1 gene transcripts of reduced size, whereas the(More)
PURPOSE From 1986 to 1992, "eight-drugs-in-one-day" (8-in-1) chemotherapy both before and after radiation therapy (XRT) (54 Gy tumor/36 Gy neuraxis) was compared with vincristine, lomustine (CCNU), and prednisone (VCP) after XRT in children with untreated, high-stage medulloblastoma (MB). PATIENTS AND METHODS Two hundred three eligible patients with an(More)
Eukaryotic cells require N-linked carbohydrates for survival. However, the biosynthetic intermediate Man5GlcNAc2Asn, in place of mature N-linked structures, allows glycoprotein synthesis and somatic cell growth to proceed normally. To determine whether the same would be true in a complex biological situation, the gene Mgat-1 was disrupted by homologous(More)
Identifying biological roles for mammalian glycans and the pathways by which they are synthesized has been greatly facilitated by investigations of glycosylation mutants of cultured cell lines and model organisms. Chinese hamster ovary (CHO) glycosylation mutants isolated on the basis of their lectin resistance have been particularly useful for(More)
Prion diseases are caused by conversion of a normally folded, non-pathogenic isoform of the prion protein (PrP(C)) to a misfolded, pathogenic isoform (PrP(Sc)). Prion inoculation experiments in mice expressing homologous PrP(C) molecules on different genetic backgrounds displayed different incubation times, indicating that the conversion reaction may be(More)
Chinese hamster ovary (CHO) mutant cells with a wide variety of alterations in the glycosylation of proteins and lipids have been isolated by selection for resistance to the cytotoxicity of plant lectins. These CHO mutants have been used to characterize glycosylation pathways, to identify genes that code for glycosylation activities, to elucidate functional(More)
Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan(More)